background image

 

CY7C1231H

Document #: 001-00207 Rev. *B

Page 4 of 12

Functional Overview

The CY7C1231H is a synchronous flow-through burst SRAM
designed specifically to eliminate wait states during
Write-Read transitions. All synchronous inputs pass through
input registers controlled by the rising edge of the clock. The
clock signal is qualified with the Clock Enable input signal
(CEN). If CEN is HIGH, the clock signal is not recognized and
all internal states are maintained. All synchronous operations
are qualified with CEN. Maximum access delay from the clock
rise (t

CDV

) is 6.5 ns (133-MHz device).

Accesses can be initiated by asserting all three Chip Enables
(CE

1

, CE

2

, CE

3

) active at the rising edge of the clock. If Clock

Enable (CEN) is active LOW and ADV/LD is asserted LOW,
the address presented to the device will be latched. The
access can either be a read or write operation, depending on
the status of the Write Enable (WE). BW

[A:B]

 can be used to

conduct Byte Write operations. 

Write operations are qualified by the Write Enable (WE). All
writes are simplified with on-chip synchronous self-timed write
circuitry. 

Three synchronous Chip Enables (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) simplify depth expansion.
All operations (Reads, Writes, and Deselects) are pipelined.
ADV/LD should be driven LOW once the device has been
deselected in order to load a new address for the next
operation.

Single Read Accesses

A read access is initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE

1

, CE

2

,

and CE

are ALL asserted active, (3) the Write Enable input

signal WE is deasserted HIGH, and 4) ADV/LD is asserted
LOW. The address presented to the address inputs is latched
into the Address Register and presented to the memory array
and control logic. The control logic determines that a read
access is in progress and allows the requested data to
propagate to the output buffers. The data is available within 6.5
ns (133-MHz device) provided OE is active LOW. After the first
clock of the read access, the output buffers are controlled by
OE and the internal control logic. OE must be driven LOW in
order for the device to drive out the requested data. On the
subsequent clock, another operation (Read/Write/Deselect)
can be initiated. When the SRAM is deselected at clock rise
by one of the chip enable signals, its output will be tri-stated
immediately.

Burst Read Accesses

The CY7C1231H has an on-chip burst counter that allows the
user the ability to supply a single address and conduct up to
four Reads without reasserting the address inputs. ADV/LD
must be driven LOW in order to load a new address into the
SRAM, as described in the Single Read Access section above.
The sequence of the burst counter is determined by the MODE
input signal. A LOW input on MODE selects a linear burst
mode, a HIGH selects an interleaved burst sequence. Both
burst counters use A0 and A1 in the burst sequence, and will
wrap around when incremented sufficiently. A HIGH input on
ADV/LD will increment the internal burst counter regardless of
the state of Chip Enable inputs or WE. WE is latched at the
beginning of a burst cycle. Therefore, the type of access (Read
or Write) is maintained throughout the burst sequence.

Single Write Accesses

Write accesses are initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE

1

, CE

2

,

and CE

are ALL asserted active, and (3) the Write signal WE

is asserted LOW. The address presented to the address bus
is loaded into the Address Register. The write signals are
latched into the Control Logic block. The data lines are
automatically tri-stated regardless of the state of the OE input
signal. This allows the external logic to present the data on
DQs and DQP

[A:B]

.

On the next clock rise the data presented to DQs and DQP

[A:B]

(or a subset for Byte Write operations, see Truth Table for
details) inputs is latched into the device and the write is
complete. Additional accesses (Read/Write/Deselect) can be
initiated on this cycle.

The data written during the Write operation is controlled by
BW

[A:B]

 signals. The CY7C1231H provides Byte Write

capability that is described in the Truth Table. Asserting the
Write Enable input (WE) with the selected Byte Write Select
input will selectively write to only the desired bytes. Bytes not
selected during a Byte Write operation will remain unaltered.
A synchronous self-timed write mechanism has been provided
to simplify the Write operations. Byte Write capability has been
included in order to greatly simplify Read/Modify/Write
sequences, which can be reduced to simple byte write opera-
tions. 

Because the CY7C1231H is a common I/O device, data
should not be driven into the device while the outputs are
active. The Output Enable (OE) can be deasserted HIGH
before presenting data to the DQs and DQP

[A:B]

 inputs. Doing

so will tri-state the output drivers. As a safety precaution, DQs
and DQP

[A:B]

.are automatically tri-stated during the data

portion of a write cycle, regardless of the state of OE. 

Burst Write Accesses

The CY7C1231H has an on-chip burst counter that allows the
user the ability to supply a single address and conduct up to
four Write operations without reasserting the address inputs.
ADV/LD must be driven LOW in order to load the initial
address, as described in the Single Write Access section
above. When ADV/LD is driven HIGH on the subsequent clock
rise, the Chip Enables (CE

1

, CE

2

, and CE

3

) and WE inputs are

ignored and the burst counter is incremented. The correct
BW

[A:B]

 inputs must be driven in each cycle of the burst write,

in order to write the correct bytes of data.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CE

1

, CE

2

, and CE

3

, must remain inactive for

the duration of t

ZZREC 

after the ZZ input returns LOW.

[+] Feedback 

Summary of Contents for CY7C1231H

Page 1: ...g transferred on every clock cycle This feature dramatically improves the throughput of data through the SRAM especially in systems that require frequent Write Read transitions All synchronous inputs...

Page 2: ...NC VSS VDDQ NC NC NC NC NC NC VDDQ VSS NC NC DQB DQB VSS VDDQ DQB DQB NC VDD NC VSS DQB DQB VDDQ VSS DQB DQB DQPB NC VSS VDDQ NC NC NC A A CE 1 CE 2 NC NC BW B BW A CE 3 V DD V SS CLK WE CEN OE NC 18...

Page 3: ...uring the data portion of a write sequence during the first clock when emerging from a deselected state when the device has been deselected CEN Input Synchronous Clock Enable Input active LOW When ass...

Page 4: ...HIGH input on ADV LD will increment the internal burst counter regardless of the state of Chip Enable inputs or WE WE is latched at the beginning of a burst cycle Therefore the type of access Read or...

Page 5: ...READ Continue Burst Next X X X L H X X H L L H Tri State WRITE Cycle Begin Burst External L H L L L L L X L L H Data In D WRITE Cycle Continue Burst Next X X X L H X L X L L H Data In D NOP WRITE ABO...

Page 6: ...H Voltage for 3 3V I O 2 0 VDD 0 3V V for 2 5V I O 1 7 VDD 0 3V VIL Input LOW Voltage 9 for 3 3V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input...

Page 7: ...ow standard test methods and procedures for measuring thermal impedance per EIA JESD51 30 32 C W JC Thermal Resistance Junction to Case 6 85 C W AC Test Loads and Waveforms Note 11 Tested initially an...

Page 8: ...after CLK Rise 0 5 ns tWEH WE BW A B Hold after CLK Rise 0 5 ns tCENH CEN Hold after CLK Rise 0 5 ns tDH Data Input Hold after CLK Rise 0 5 ns tCEH Chip Enable Hold after CLK Rise 0 5 ns Notes 12 Tim...

Page 9: ...nce is determined by the status of the MODE 0 Linear 1 Interleaved Burst operations are optional WRITE D A1 1 2 3 4 5 6 7 8 9 CLK tCYC tCL tCH 10 CE tCEH tCES WE CEN tCENH tCENS BW A B ADV LD tAH tAS...

Page 10: ...uth Table for all possible signal conditions to deselect the device 23 I Os are in tri state when exiting ZZ sleep mode Switching Waveforms continued READ Q A3 4 5 6 7 8 9 10 A3 A4 A5 D A4 1 2 3 CLK C...

Page 11: ...ZBT is a trademark of Integrated Device Technology Inc All product and company names mentioned in this document are the trademarks of their respective holders Ordering Information Not all of the spee...

Page 12: ...conductor Corporation on Page 1 from 3901 North First Street to 198 Champion Court Removed 100 MHz Speed bin Changed Three State to Tri State Modified Input Load to Input Leakage Current except ZZ and...

Reviews: