background image

 

2-Mbit (128K x 18) Flow-Through SRAM

with NoBL™ Architecture

CY7C1231H

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document #: 001-00207 Rev. *B

 Revised April 26, 2006

Features

• Can support up to 133-MHz bus operations with zero 

wait states

— Data is transferred on every clock

• Pin compatible and functionally equivalent to ZBT™ 

devices 

• Internally self-timed output buffer control to eliminate 

the need to use OE

• Registered inputs for flow-through operation

• Byte Write capability

• 128K x 18 common I/O architecture 

• 3.3V core power supply

• 3.3V/2.5V I/O operation

• Fast clock-to-output times

— 6.5 ns (133-MHz device)

• Clock Enable (CEN) pin to suspend operation

• Synchronous self-timed write

• Asynchronous Output Enable

• Offered in JEDEC-standard lead-free 100-pin TQFP 

package 

• Burst Capability—linear or interleaved burst order

• Low standby power

Functional Description

[1]

The CY7C1231H is a 3.3V/2.5V, 128K x 18 Synchronous
Flow-through Burst SRAM designed specifically to support
unlimited true back-to-back Read/Write operations without the
insertion of wait states. The CY7C1231H is equipped with the
advanced No Bus Latency™ (NoBL™) logic required to
enable consecutive Read/Write operations with data being
transferred on every clock cycle. This feature dramatically
improves the throughput of data through the SRAM, especially
in systems that require frequent Write-Read transitions.

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. The clock input is qualified by
the Clock Enable (CEN) signal, which when deasserted
suspends operation and extends the previous clock cycle.
Maximum access delay from the clock rise is 6.5 ns (133-MHz
device).

Write operations are controlled by the two Byte Write Select
(BW

[A:B]

) and a Write Enable (WE) input. All writes are

conducted with on-chip synchronous self-timed write circuitry.

Three synchronous Chip Enables (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. In order to avoid bus
contention, the output drivers are synchronously tri-stated
during the data portion of a write sequence.

Note: 

1. For best-practices recommendations, please refer to the Cypress application note 

System Design Guidelines 

on www.cypress.com.

C

MODE

BW

A

BW

B

WE

CE

1

CE

2

CE

3

OE

READ LOGIC

DQs
DQP

A

DQP

B

MEMORY

ARRAY

E

INPUT

REGISTER

ADDRESS
REGISTER

WRITE REGISTRY

AND DATA COHERENCY

CONTROL LOGIC

BURST

LOGIC

A0'

A1'

D1
D0

Q1
Q0

A0

A1

ADV/LD

CE

ADV/LD

C

CLK

CEN

WRITE

DRIVERS

D
A

T

A

S
T
E
E

R

I

N
G

S
E

N

S
E

A

M

P
S

WRITE ADDRESS

REGISTER

A0, A1, A

O
U

T
P

U

T

B

U

F
F
E

R

S

E

ZZ

SLEEP 

CONTROL

Logic Block Diagram

[+] Feedback 

Summary of Contents for CY7C1231H

Page 1: ...g transferred on every clock cycle This feature dramatically improves the throughput of data through the SRAM especially in systems that require frequent Write Read transitions All synchronous inputs...

Page 2: ...NC VSS VDDQ NC NC NC NC NC NC VDDQ VSS NC NC DQB DQB VSS VDDQ DQB DQB NC VDD NC VSS DQB DQB VDDQ VSS DQB DQB DQPB NC VSS VDDQ NC NC NC A A CE 1 CE 2 NC NC BW B BW A CE 3 V DD V SS CLK WE CEN OE NC 18...

Page 3: ...uring the data portion of a write sequence during the first clock when emerging from a deselected state when the device has been deselected CEN Input Synchronous Clock Enable Input active LOW When ass...

Page 4: ...HIGH input on ADV LD will increment the internal burst counter regardless of the state of Chip Enable inputs or WE WE is latched at the beginning of a burst cycle Therefore the type of access Read or...

Page 5: ...READ Continue Burst Next X X X L H X X H L L H Tri State WRITE Cycle Begin Burst External L H L L L L L X L L H Data In D WRITE Cycle Continue Burst Next X X X L H X L X L L H Data In D NOP WRITE ABO...

Page 6: ...H Voltage for 3 3V I O 2 0 VDD 0 3V V for 2 5V I O 1 7 VDD 0 3V VIL Input LOW Voltage 9 for 3 3V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input...

Page 7: ...ow standard test methods and procedures for measuring thermal impedance per EIA JESD51 30 32 C W JC Thermal Resistance Junction to Case 6 85 C W AC Test Loads and Waveforms Note 11 Tested initially an...

Page 8: ...after CLK Rise 0 5 ns tWEH WE BW A B Hold after CLK Rise 0 5 ns tCENH CEN Hold after CLK Rise 0 5 ns tDH Data Input Hold after CLK Rise 0 5 ns tCEH Chip Enable Hold after CLK Rise 0 5 ns Notes 12 Tim...

Page 9: ...nce is determined by the status of the MODE 0 Linear 1 Interleaved Burst operations are optional WRITE D A1 1 2 3 4 5 6 7 8 9 CLK tCYC tCL tCH 10 CE tCEH tCES WE CEN tCENH tCENS BW A B ADV LD tAH tAS...

Page 10: ...uth Table for all possible signal conditions to deselect the device 23 I Os are in tri state when exiting ZZ sleep mode Switching Waveforms continued READ Q A3 4 5 6 7 8 9 10 A3 A4 A5 D A4 1 2 3 CLK C...

Page 11: ...ZBT is a trademark of Integrated Device Technology Inc All product and company names mentioned in this document are the trademarks of their respective holders Ordering Information Not all of the spee...

Page 12: ...conductor Corporation on Page 1 from 3901 North First Street to 198 Champion Court Removed 100 MHz Speed bin Changed Three State to Tri State Modified Input Load to Input Leakage Current except ZZ and...

Reviews: