background image

AD1849K

REV. 0

–17–

SERIAL INTERFACE

A single serial interface on the AD1849K provides for the trans-
fer of both data and control information. This interface is simi-
lar to AT&T’s Concentrated Highway Interface (CHI), allowing
simple connection with ISDN and other telecommunication
devices. The AD1849K’s implementation also allows a no-glue
direct connection to members of Analog Devices’ family of
fixed-point DSP processors, including the ADSP-2101, the
ADSP-2105, the ADSP-2111, and the ADSP-2115.

Frames and Words

The AD1849K serial interface supports time-division multi-
plexing. Up to four AD1849K Codecs or compatible devices
can be daisy-chained on the same serial lines. A “frame” can
consist of one, two, or four 64-bit “words.” Thus, frames can be
64, 128, or 256 bits in length as specified by the FSEL bits in
Control Byte 3. Only 64 bits of each frame, a “word,” contain
meaningful data and/or control information for a particular
Codec. See Figure 4 below.

ONE WORD/FRAME            WORD #1

                                         0                   63

TWO WORDS/FRAME         WORD #1       WORD #2   

                                         0                  63 64             127

FOUR WORDS/FRAME       WORD #1       WORD #2       WORD #3       WORD #4  

                                         0                 63 64              127 128         191  192           255

Figure 4. Frames and Words

The AD1849K supports two types of words: Data Words and
Control Words. The proper interpretation of a word is deter-
mined by the state of the asynchronous Data/Control (D/

C

) pin.

The D/

C

 pin establishes whether the SoundPort Codec is in the

“Data” mode or “Control” mode. Transitions between these
modes require an adherence to a handshaking protocol to pre-
vent ambiguous bus ownership. The Data/ Control transition
protocol is described below in a separate section.

Clocks and the Serial Interface

The primary pins of the AD1849K’s serial interface are the
serial data receive (SDRX) input pin. The serial data transmit
(SRTX) pin, the serial data bit clock (SCLK) pin, the frame
sync output (FSYNC) pin, the chaining word input (TSIN) pin,
and the chaining word output (TSOUT) pin. The AD1849K
can operate in either master mode—in which case SCLK and
FSYNC are outputs and TSIN is an input—or in slave mode—
in which case SCLK and TSIN are inputs and FSYNC is three-
stated. If the AD1849K is in master mode, the internally
selected clock source is used to drive SCLK and FSYNC.  Note
that in Control Mode, the Codec always behaves as a slave,
regardless of the current state of the MS (Master/Slave) bit.

The five possible combinations of clock source and master/slave
are summarized in Figure 5.

INTERNAL OSCILLATORS

 YES

 CONDITIONAL

CLKIN

 YES

 CONDITIONAL

SCLK

IMPOSSIBLE

 YES

MASTER

SLAVE

Figure 5. Clock Source and Master/Slave Combinations

Recommended modes are indicated above by “yes.” Note that
Codec performance is improved with a clean clock source, and
in many systems the lowest jitter clocks available will be those
generated by the Codec’s internal oscillators. Conversely, SCLK
in many systems will be the noisiest source. The master/SCLK
clock source combination is impossible because selecting SCLK
as the clock source overrides the MS control bit, forcing slave
mode. (The SCLK pin cannot be driving out if it is simulta-
neously receiving an external clock.)

The internal oscillators or CLKIN can be the clock source when
the serial interface is in slave mode provided that all clocks
applied to the AD1849K SoundPort Codec are derived from the
same external source.  Precise phase alignment of the clocks is
not necessary, rather the requirement is that there is no
frequency drift between the clocks.

In master mode, the SCLK output frequency is determined by
the number of bits per frame selected (FSEL) and the sampling
frequency, F

S

.  In short, SCLK = FSEL 

×

 F

S

 in master mode.

Timing Relationships

Input data (except PIO) is clocked by the falling edge of SCLK.
Data outputs (except PIO) begin driving on the rising edge of
SCLK and are always valid well before the falling edge of
SCLK.

Word chaining input, TSIN, indicates to a particular Codec the
beginning of its word within a frame in both slave and master
modes. The master mode Codec will generate a FSYNC output
which indicates the beginning of a frame. In single Codec
systems, the master’s FSYNC output should be tied to the
master’s TSIN input to indicate that the beginning of the frame
is also the beginning of its word. In multiple Codec daisy-chain
systems, the master’s FSYNC output should be tied to the
TSIN input of the Coded (either the master or one of the
slaves) which is intended to receive the first word in the frame.
FSYNC and TSIN are completely independent, and nothing
about the wiring of FSYNC to TSIN is determined by master or
slave status (i.e., the master can own any one of the words in the
frame). The master Codec’s FSYNC can also be tied to all of
the slave Codecs’ FSYNC pins. When a slave, a Codec’s
FSYNC output is three-stated. Thus, it can be connected to a
master’s FSYNC without consequence. See “Daisy-Chaining
Multiple Codecs” below for more details.

The FSYNC rate is always equal to the data conversion
sampling frequency, F

S

. In Data Mode, the key significance of

“frames” are to synchronize the transfer of digital data between
an AD1849K’s internal ADCs and DACs and its serial interface
circuitry. If, for example, a Codec has been programmed for two
words per frame (FSEL = “1”), then it will trigger the data
converters and transfer data between the converters and the
interface every 128 SCLKs. The TSIN input signals the Codec
where its word begins within the frame. In Control Mode, frame
size is irrelevant to the operation of any particular Codec; TSIN
and TSOUT are sufficient to convey all the information
required.

Summary of Contents for AD1849K

Page 1: ...are available over a single bidirectional serial interface that also sup ports 16 bit digital input to the DACs and control information The AD1849K can accept and generate 8 bit law or A law compande...

Page 2: ...Line 1 External Load Capacitance 100 pF Line 0 1 ANALOG INPUT Min Typ Max Units Input Voltage RMS Values Assume Sine Wave Input Line and Mic with 0 dB Gain 0 94 0 99 1 04 V rms 2 66 2 80 2 94 V p p Mi...

Page 3: ...Interchannel Gain Mismatch Line and Mic 0 3 dB Difference of Gain Errors DIGITAL TO ANALOG CONVERTERS Min Typ Max Units Resolution 16 Bits DAC Dynamic Range 60 dB Input THD N Referenced 80 86 dB to Fu...

Page 4: ...Scale Output Voltage Line 0 1 0 707 V rms OLB 1 1 85 2 0 2 1 V p p Full Scale Output Voltage Line 0 1 0 V rms OLB 0 2 8 V p p Full Scale Output Voltage Line 1 4 0 V p p OLB 0 Full Scale Output Voltage...

Page 5: ...o Valid tZV 15 ns Output Valid to Hi Z tVZ 20 ns Power Up RESET LO Time 50 ms Operating RESET LO Time 100 ns POWER SUPPLY Min Typ Max Units Power Supply Voltage Range 4 75 5 25 V Digital and Analog Po...

Page 6: ...atic discharge sensitive device Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection Although the AD1849K features propri...

Page 7: ...l Line Input MINL 17 11 I Left Channel Microphone Input 20 dB from Line Level if MB 0 or Line Level if MB 1 MINR 15 9 I Right Channel Microphone Input 20 dB from Line Level if MB 0 or Line Level if MB...

Page 8: ...riod is 10 7 milliseconds at a 48 kHz sampling rate and 64 milliseconds at an 8 kHz sampling rate Time out ms 512 Sampling Rate kHz Monitor Mix A monitor mix is supported that digitally mixes a portio...

Page 9: ...d to prevent undesired outputs Monitor mix will be automatically disabled by the Codec During the autocalibration sequence the serial data output from the ADCs is meaningless and the ADI bit is assert...

Page 10: ...provided to generate a wide range of sample rates The oscillators for these crystals are on the AD1849K as is a multiplexer for selecting between them They can be overdriven with external clocks by th...

Page 11: ...ntrol Byte 1 Status Register Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0 0 0 1 MB OLB DCB 0 AC 63 62 61 60 59 58 57 56 MB Mic bypass 0 Mic inputs applied to 20 dB fixed gain block 1 Mic in...

Page 12: ...4 43 42 41 40 ITS Immediate three state 0 FSYNC SDTX and SCLK three state within 3 SCLK cycles after D C goes LO 1 FSYNC SDTX and SCLK three state immediately after D C goes LO MCK2 0 Clock source sel...

Page 13: ...PIO1 0 Parallel I O bits for system signaling PIO bits do not affect Codec operation Control Byte 6 Reserved Register Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0 0 0 0 0 0 0 0 0 23 22 21...

Page 14: ...4 R13 R12 R11 R10 R9 R8 47 46 45 44 43 42 41 40 In 16 bit linear PCM mode this byte contains the upper eight bits of the right audio data sample In the 8 bit companded and linear modes this byte conta...

Page 15: ...ther ADC channel is driven beyond the specified input range It is sticky i e it remains set until explicitly cleared by writing a 0 to OVR A 1 written to OVR is ignored allowing OVR to remain 0 until...

Page 16: ...transition from Control Mode to Data Mode those control register values that are not changeable in Control Mode get reset to the defaults above except PIO The control registers that can be changed in...

Page 17: ...e and in many systems the lowest jitter clocks available will be those generated by the Codec s internal oscillators Conversely SCLK in many systems will be the noisiest source The master SCLK clock s...

Page 18: ...e host for operation Subsequent transitions to Control Mode after initialization are expected to be relatively infrequent Control information that is likely to change frequently e g gain levels is tra...

Page 19: ...provides a convenient mechanism for transferring signaling information between the serial data and control streams and the external pair of bidirectional pins also named PIO1 and PIO0 The states of th...

Page 20: ...Handshaking Protocol The D C pin can make transitions completely asynchronously to internal Codec operation This fact necessitates a handshaking protocol to ensure a smooth transition between serial...

Page 21: ...andshake the AD1849K and the CS4215 DCB protocols are equivalent Control Mode to Data Mode Transition and Autocalibration The AD1849K will enter Data Mode when the asynchronous D C signal goes HI The...

Page 22: ...OR AD820 0 33 F 0 33 F Figure 12 AD1849K Phantom Powered Microphone Input Circuit Figure 13 shows ac coupled line outputs The resistors are used to center the output signals around analog ground If d...

Page 23: ...201 746 0333 Note that using the exact data sheet frequencies is not required and that external clock sources can be used to overdrive the AD1849K s internal oscillators See the description of the MCK...

Page 24: ...ort Codec to four of Analog Devices Fixed Point DS Ps The ADSP 2111 ADSP 2101 and ADSP 2115 use their multichannel serial port for the data interface and flag outputs for D C The ADSP 2105 has a singl...

Page 25: ...single pole active filter requiring a dual op amp Though overkill for the AD1849K this input circuit will work with the AD1849K as well The AD1849K was designed to require no external low pass filter...

Page 26: ...MPLE FREQUENCY FS Figure 25 AD1849K Analog to Digital Frequency Response Transition Band Full Scale Line Level Inputs 0 dB Gain 10 120 1 0 90 110 0 1 100 0 0 60 80 70 50 30 20 0 10 40 0 8 0 9 0 7 0 6...

Page 27: ...TROL REGISTERS 11 Control Mode Control Registers 11 Data Mode Data and Control Registers 14 Control Register Defaults 16 SERIAL INTERFACE 17 Frames and Words 17 Clocks and the Serial Interface 17 Timi...

Page 28: ...0 013 0 33 0 056 1 42 0 042 1 07 0 025 0 63 0 015 0 38 0 180 4 57 0 165 4 19 0 63 16 00 0 59 14 99 0 110 2 79 0 085 2 16 0 040 1 01 0 025 0 64 0 050 1 27 BSC 0 020 0 50 R PIN 1 IDENTIFIER BOTTOM VIEW...

Reviews: