84
Power Quality Analyzer Model 3945
8.1.12 Ratios
PF[
i
] =
i + 1 phase power factor
W[
i
]
VA[
i
]
DPF[
i
] = cos(
φ
[
i
])
i + 1 phase displacement factor
Tan[
i
] = tan(
φ
[
i
])
i + 1 phase tangent
PF[3] =
PF[0] + PF[1] + PF[2]
3
Total power factor
DPF[3] =
DPF[0] + DPF[1] + DPF[2]
3
Total shift factor
Tan[3] =
Tan[0] + Tan[1] + Tan[2]
3
Total tangent
cos(
φ
[
i
]) =
[][ ]
Cosine angle between voltage
fundamental and i + 1 phase current
NSS-1
0
2
n
i
VF
[][ ]
n
i
AF
n
∑
=
[][ ]
NSS-1
0
n
i
VF
n
∑
=
2
[][ ]
NSS-1
0
n
i
AF
n
∑
=
.
8.1.13 Various Types of Energy
Wh[
i
] =
Active energy i + 1 phase
W[
i
]
3600
∑
Tint
VAh[
i
] =
Active energy i + 1 phase
VA[
i
]
3600
∑
Tint
VARhL[
i
] =
for VAR[
i
]
≥
0 Reactive inductive energy i + 1 phase
VAR[
i
]
3600
∑
Tint
VARhC[
i
] =
for VAR[
i
]
≥
0 Reactive capacitive energy i + 1 phase
VAR[
i
]
3600
∑
Tint