Chapter 2:
System Overview
5
The
Display Subsystem
converts the detected ultrasound data into picture elements (pixels). The software user
interface graphics are combined with the ultrasound information and converted to a video stream. The external
video port supports NTSC and PAL format.
The
Control Subsystem
consists of the central processing unit, program and video memory, permanent image
storage and retrieval memory, external communication interface ports, and connection to the user interface keys.
The control software includes the acoustic power and intensity software subsystem, power group monitors, and a
beamformer monitor. This software guarantees a level of patient safety by ensuring the system is operating within
acoustic power and intensity limits.
The
User Interface Subsystem
represents the software interface and form factor. The software interface is the
interaction between the user and the screen layout components. The form factor is the type of physical buttons,
location, and grouping of the buttons and the device size, shape, and weight. Dedicated controls are for high usage
activities and grouped according to the user workflow.
The
Power Subsystem
provides the system power and protects the hardware from destructive and/or unsafe
conditions by detecting failures in the system through hardware and software monitors. Detection of a fault results
in disabling of the pulser supply, and signaling of an error to the Control Group. The power subsystem includes the
battery pack and battery charging electronics.
Description of Operating Modes
2D Mode
2D mode is a two dimensional image of the amplitude of the echo signal. It is used for
location and measurement of anatomical structures and for spatial orientation during
operation of other modes. In 2D, a two-dimensional cross-section of a 3-dimensional soft
tissue structure such as the heart is displayed in real time. Ultrasound echoes of different
intensities are mapped to different gray scale or color values in the display. The outline of the
2D cross-section may be a rectangle, parallelogram, trapezoid, sector, or a full circle,
depending on the particular transducer used. 2D mode can be used in combination with any
other modes.
M Mode
M Mode is also known as “T-M mode” or “time-motion” mode. It is used primarily for cardiac
measurements such as valve timing and septal wall thickness when accurate timing
information is required.
Ultrasound echoes of different intensities are mapped to different gray scale values in a
scrolling display. M Mode displays time motion information of the ultrasound data derived
from a stationary beam. Depth is arranged along the vertical axis with time along the
horizontal axis. M Mode can be used alone but is normally used in conjunction with a 2D
image for spatial reference. The 2D image has a graphical line (M-line) superimposed on the
2D image indicating where the M Mode beam is located.
Содержание M-Turbo
Страница 1: ...M Turbo Ultrasound System Service Manual TM...
Страница 6: ...2 Chapter 1 Introduction...
Страница 20: ...16 Chapter 3 Troubleshooting...
Страница 36: ...32 Chapter 4 Replacement Procedures...
Страница 44: ...40 Chapter 5 Performance Testing...
Страница 48: ...44 Appendix A Replacement Parts List Figure A 1 Power Supply P08850 Figure A 2 Speaker Assembly P03872...
Страница 52: ...48 Appendix B Service Event Report Service Event Report Form...
Страница 56: ...52 Index...
Страница 57: ......
Страница 58: ...P08144 01 P08144 01...