![Heinz Walz JUNIOR PAM Скачать руководство пользователя страница 49](http://html1.mh-extra.com/html/heinz-walz/junior-pam/junior-pam_operators-manual_2120012049.webp)
ACRONYMS AND EQUATIONS
CHAPTER 6
tween plants: in extreme shade leaves, substantial closure of PS II cen-
ters can occur already at PAR values of 0.1
μ
mol photons/(m
2
·s) but
many sun leaves exhibit mostly open PS II centers even at 10-40
μ
mol
μ
mol photons/(m
2
·s).
Table 6.1: Fluorescence Quotients.
Source Equation
Maximum photochemical quantum
yield of PS II (Kitajima and Butler,
1975)
M
M
M
V
F
F
F
F
F
0
−
=
M
M
F
F
F
II
Y
′
′
−
′
=
)
(
Effective photochemical quantum
yield of PS II (Genty et al., 1989)
Coefficient of photochemical fluores-
cence quenching (Schreiber et al.
1986 as formulated by van Kooten
and Snel, 1990)
0
M
F
F
F
F
q
M
P
′
−
′
′
−
′
=
Coefficient of photochemical fluores-
cence quenching assuming intercon-
nected PS II antennae (Kramer et al.
2004)
F
F
q
q
P
L
′
′
⋅
=
0
Coefficient of photochemical fluores-
cence quenching (Schreiber et al.
1986 as formulated by van Kooten
and Snel, 1990)
0
0
1
F
F
F
F
q
M
M
N
−
′
−
′
−
=
Stern-Volmer type non-photochem-
ical fluorescence quenching (Bilger
and Björkman, 1990)
1
−
′
=
M
M
F
F
NPQ
Quantum yield of non-light induced
non-photochemical fluorescence
quenching (Kramer et al. 2004)
)
1
(
1
1
)
(
0
−
⋅
+
+
=
F
F
q
NPQ
NO
Y
M
L
Quantum yield of light-induced (
Δ
pH
and zeaxanthin-dependent) non-
photochemical fluorescence quench-
ing (Kramer et al. 2004)
)
(
)
(
1
)
(
NO
Y
II
Y
NPQ
Y
= −
−
45