205
7679H–CAN–08/08
AT90CAN32/64/128
18.2.2
Electrical Interconnection
As depicted in
, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.
The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in
“Two-wire Serial Interface Characteristics” on page 369
. Two
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.
18.3
Data Transfer and Frame Format
18.3.1
Transferring Bits
Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.
Figure 18-2.
Data Validity
18.3.2
START and STOP Conditions
The master initiates and terminates a data transmission. The transmission is initiated when the
master issues a START condition on the bus, and it is terminated when the master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behaviour, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.
SDA
SCL
Data Stable
Data Stable
Data Change
Содержание AVR AT90CAN128
Страница 414: ...414 7679H CAN 08 08 AT90CAN32 64 128 32 2 QFN64...
Страница 415: ...415 7679H CAN 08 08 AT90CAN32 64 128...