background image

© 2023

www.teamWavelength.com

5

WHY5640 TEMPERATURE CONTROLLER

Table 2.  WHY5690 Evaluation Board Pin Descriptions

SILKSCREEN 

LABEL

NAME

FUNCTION

LIMA

Limit A Trimpot

Sets the maximum output current drawn from the V

S

 supply input and delivered to 

OUTPUTA. This is heating current limit when used with NTC sensors.

LIMB

Limit B Trimpot

Sets the maximum output current drawn from the V

S

 supply input and delivered to 

OUTPUTB. This is cooling current limit when used with NTC sensors.

P GAIN

Proportional Gain

Sets the proportional gain constant for the control loop and can be adjusted to optimize 

the control parameters of the system using the P GAIN trimpot. Turning the trimpot 

counter-clockwise will increase the value, while turning it clockwise will decrease the 

value.

I TERM

Integrator Time 

Constant

Sets the integrator time constant for the control loop and can be adjusted to optimize 

the control parameters of the system using the I TERM trimpot. Turning the trimpot 

counter-clockwise will decrease the value, while clockwise will increase the value.

RSET

Setpoint 

Resistance Trimpot

Sets the resistance value of the thermistor at the desired operating temperature. The 

resistance can be monitored using the two test points (see 

Figure 12

while turning the 

trimpot. The RSET switch needs to be in the SET position while setting the resistance.

RSET SWITCH

Run / Set Switch

Sets whether the evaluation board is running (RUN position) or parameters are being 

set (SET position). When adjusting the RSET trimpot, the RSET switch must be in the 

SET position. Once the resistance is set, the switch can be moved to the RUN position.

Positive connection to the sensor.

SENSOR-

Sensor -

Negative connection to the sensor.

OUTPUTA

Output A

Connect OUTPUTA to the negative terminal on your thermoelectric when controlling 

temperature with Negative Temperature Coefficient  thermistors. OUTPUTA provides 

the heating current to the TEC for NTC sensors. Connect OUTPUTA to the positive 

thermoelectric terminal when using Positive Temperature Coefficient RTDs. Resistive 

heaters can be connected either way for quick connection. See 

Table 8

 for output 

configuration for maximum voltage connection.

OUTPUTB

Output B

Connect OUTPUTB to the positive terminal on your thermoelectric when controlling 

temperature with Negative Temperature Coefficient thermistors. OUTPUTB provides 

the cooling current to the TEC for NTC sensors. Connect OUTPUTB to the negative 

thermoelectric terminal when using Positive Temperature Coefficient RTDs. Resistive 

heaters can be connected either way for quick connection. See 

Table 8

 for output 

configuration for maximum voltage connection.

VS

Power Drive 

Supply Input

Provides power to the WHY5640 H-Bridge Power Stage. Supply range input for this 

pin is +4.5 to +30 VDC. The maximum current drain on this terminal should not exceed 

2.5 A.

VDD

Control Electronics 

Supply Input

Power supply input for the WHY5640’s internal control electronics. Supply range input 

for this pin is +5 to +26 VDC.

PGND

Power Drive 

Supply Ground

Connect the V

S

 power supply ground connection to PGND. Pin 11 (PGND) and Pin 12 

(CGND) are internally connected on the WHY5640.

VM1 & VM2

Voltage Monitor 1 

& 2

Provides  monitor  voltages  referenced  to  the  COM  terminal.  Externally  monitor  the 

WHY5640 setpoint resistance and the actual temperature sensor resistance levels by 

monitoring voltages produced from the sensor bridge circuit. VM1 and VM2 can be 

used to calculate the thermistor resistance using 

Equation 7.

COM

Common

Reference monitor voltages to this Common terminal. Do not connect the power supply 

ground to this terminal.

ENABLE ON/OFF

Enable on / off 

switch

Enables and disables the WHY5640 output current. The green ON LED indicator will 

light when the output current is enabled. ENABLE switch should be set to the OFF 

position when connecting power to the WHY5690 Evaluation Board.

Summary of Contents for WHY5640

Page 1: ...Supply Low Cost 0 005 C Stability typical Linear PI Temperature Control High 2 2 A Output Current Control Above and Below Ambient Master Booster Operation Temperature Setpoint Heat and Cool Current L...

Page 2: ...the Wavelength Electronics website for the most accurate up to date and easy to use SOA calculator www teamwavelength com support design tools soa tc calculator Figure 1 shows the pin layout and descr...

Page 3: ...electric Cooler TEC or resistive heater connected directly to Pin 9 and Pin 13 on the controller as shown in Figure 3 NOTE Use a max of 5 V power supply with the test load shown Values shown can simul...

Page 4: ...on for the sensor RT and setpoint RS resistors 8 VDD Control Electronics Supply Input Power supply input for the WHY5640 s internal control electronics Supply range input for this pin is 5 to 26 VDC 9...

Page 5: ...Negative Temperature Coefficient thermistors OUTPUTA provides the heating current to the TEC for NTC sensors Connect OUTPUTA to the positive thermoelectric terminal when using Positive Temperature Co...

Page 6: ...o Pin 13 Full Temp Range IS 100 mA VS 0 7 VS 0 5 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 1 A VS 1 2 VS 1 0 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 2 A VS 1 6 VS 1 4 V P...

Page 7: ...operates directly with thermistors or RTD temperature sensors The fundamental operating principle is that the controller adjusts the TEC drive current in order to change the temperature of the sensor...

Page 8: ...UCTIONS STANDALONE NECESSARY EQUIPMENT The following equipment is required to configure the WHY5640 for basic operation WHY5640 Temperature Controller Thermistor or other temperature sensor Peltier ty...

Page 9: ...6 7 Use one of the sensors in the sections listed below SENSOR SELECTION Select a temperature sensor that is responsive around the desired operating temperature The temperature sensor should produce...

Page 10: ...th reference to Pin 1 AGND If the setpoint resistor RS is larger than the RTD resistance RRTD then the control loop will produce a heating current since the temperature sensed by the RTD is below cool...

Page 11: ...alues can be fine tuned experimentally Start with component values from Table 5 and operate the temperature controller system to determine if the load temperature settling time is satisfactory If it i...

Page 12: ...to Pin 1 AGND with a 1 5 k resistor when using RTDs LM335 type and AD590 type temperature sensors with a resistive heater Connect the resistive heater to Pins 9 and 13 to operate INCREASING OUTPUT CU...

Page 13: ...OLLERS 3 WHY5640 CONTROLLERS 4 WHY5640 CONTROLLERS 5 WHY5640 CONTROLLERS CURRENT LIMIT SET RESISTOR K RA RB 0 0 0 0 0 1 60 0 1 0 2 0 3 0 4 0 5 1 69 0 2 0 4 0 6 0 8 1 0 1 78 0 3 0 6 0 9 1 2 1 5 1 87 0...

Page 14: ...ll be operating within the internalheat dissipation Safe Operating Area SOA STEP 1 INSTALL WHY5640 ON THE WHY5690 WITH HEATSINK AND FAN Match up the notch Figure 12 on the WHY5640 with the silkscreen...

Page 15: ...lectronics to use the WHY5690 with other sensors or ranges STEP 5 ATTACHING THE VDD AND VS POWER SUPPLIES Ensure that the controller can be safely operated by checking the SOA Calculator website The V...

Page 16: ...board toggle switch The output is enabled when the green ON LED indicator is lit NOTE Before enabling the output make sure the RUN SET switch is set to the RUN position When enabled with this switch i...

Page 17: ...an wire configuration may be different than shown Fan can be rotated on the WHY so the location of the wires matches custom PCB WHY5640 and WHY5690 assembly instructions Figure 15 Match up the notch s...

Page 18: ...perating thermistor resistance RT For example for a 10 k thermistor operating at 25 C choose R1 to be 20 k NOTE Pin 9 OUTA is the heating current sink and Pin 13 OUTB is the cooling current sink Figur...

Page 19: ...S given a desired operating temperature measured in Celsius Rs 2R3 0 5 273 15 TCelsius 1mV K 10 Resistor R3 is a fixed resistance value that can be used to scale or adjust the setpoint resistor RS Sel...

Page 20: ...2 W 3 Heatsink and 3 5CFM fan required 2 W PWHY 9 W 4 Unsafe Operating Area PWHY Power internally dissipated in the WHY5640 1 2 3 4 5 10 15 20 25 0 0 0 5 1 0 1 5 2 0 Voltage Drop Across WHY VS VLOAD V...

Page 21: ...VS VDD VS S1 SPST LIM B LIM A SGL TURN SGL TURN CCW 0 AMPS CW 2 AMPS SGL TURN P GAIN I TERM OUT A OUT B SENSOR SENSOR VM1 VM2 VDD VS PGND COMMON OUTA OUTB LIMB LIMA VM2 VM1 S S R8 1k R7 1k CCW 0 AMPS...

Page 22: ...ple at 25 C a 10 k thermistor has a sensitivity of 43 mV C whereas an RTD sensor has a sensitivity of 4 mV C Proportional control term may be set too high Reduce the value of the proportional term For...

Page 23: ...40 UNC Airflow Direction MECHANICAL SPECIFICATIONS All Tolerances are 5 unless noted WEIGHTS WHY5640 0 6 oz WHS302 Heatsink 0 5 oz WXC303 4 Fan 0 3 oz PIN DIAMETER 0 020 PIN LENGTH 0 157 12 PIN MATERI...

Page 24: ...FAN COM VM2 VM1 CW 2 AMPS CCW 0 AMPS LIM B OUTPUT A SENSOR RUN RSET CW Decr CCW Incr sec I TERM PGND VS VDD OFF ENABLE ON WAVELENGTH ELECTRONICS For use with WHY5640 CW Decr CCW Incr P GAIN SET CCW D...

Page 25: ...BLUE PGND 2 ORANGE VS 3 RED VDD 4 BLACK COM 5 WHITE VM1 6 GREEN VM2 CABLING SPECIFICATIONS These cables are included with the WHY5690 Evaluation Board WTC3293 00101 INPUT CABLE MOLEX 43645 0400 MICRO...

Page 26: ...eering decompiling or disassembling this product NOTICE The information contained in this document is subject to change without notice Wavelength will not be liable for errors contained herein or for...

Reviews: