background image

© 2023

www.teamWavelength.com

19

WHY5640 TEMPERATURE CONTROLLER

Resistor, R

2

,  is  a  fixed  resistance  value  that  can  be  used 

to scale or adjust the setpoint voltage, V

IN

, allowing control 

above and below the ambient temperature. In most 

applications select resistor, R

2

, equal to two times the 

desired operating RTD resistance, R

RTD

.

Figure 19

 demonstrates an example of how to use an 

external  voltage  setpoint  to  control  a  100  Ω  RTD  from  a 

range of 0 Ω to 200 Ω.

Figure 19.  

Example Using a 100 Ω RTD with External Voltage 

Control

Operation with AD590 & LM335 Sensors - 
Pins 1, 6, & 7

Use an AD590 and LM335 Sensor to operate the WHY5640 

controller

Figure 20

 illustrates how to connect the WHY5640 

for  operation  with  PTC  (Positive  Temperature  Coefficient) 

linear sensors AD590 or LM335. Choose one of the top 

circuits  (LM335  or AD590  sensor)  to  use  with  the  bottom 

circuit.

Equation 9 illustrates how to determine the setpoint 

resistance, R

S

,  given  a  desired  operating  temperature 

measured in Celsius.

Rs = 2R3

[0.5 – (273.15 + T

Celsius

)(1mV / K)]         

(10)

Resistor, R

3

, is a fixed resistance value that can be used to 

scale or adjust the setpoint resistor, R

S

. Select resistor R

3

 

equal to 10 kΩ for most applications.

Figure 21

 demonstrates an example of how to use an 

AD590 to control from -50ºC to +150ºC.

Figure 22

 illustrates the setpoint resistance, V

IN

, versus 

AD590 temperature for the example in 

Figure 21

.

+0.5V

SENSOR BRIDGE AMPLIFIER

R3

RS

1

7

6

SETPOINT

RESISTOR

V

T

 = 1 mV/Kelvin

V

DD

LM335

10 mV/Kelvin

+V

T

-V

T

AGND

1/2LM358

SENS

ERR

WHY5640

1 kΩ

9 kΩ

1 kΩ

V

DD

1 kΩ

AD590

1 µA/Kelvin

+V

T

-V

T

-V

T

+V

T

OR

Figure 20.  AD590 & LM335 Operation Circuit

Figure 21.  Example Using AD590 Sensor

Figure 22.  Example Setpoint Resistance vs. AD590 

Temperature

R

S

1

7

6

V

T

 = 1 mV/Kelvin

V

DD

1 k

AD590

µ

A/Kelvin

AGND

SENS

ERR

1/2 LM358

1.5 k

10 k

+0.5 V

SENSOR BRIDGE AMPLIFIER

WHY5640

SETPOINT

RESISTOR

5 kΩ TRIMPOT

+0.5V

SENSOR BRIDGE AMPLIFIER

R

RTD

1

7

6

100 Ω RTD

V

IN

+

-

1/2LM358

AGND

SENS

ERR

WHY5640

200 Ω

5

6

4

3

2

1

-50

0

50

100

150

0

Temperature (Celsius)

S

et

po

in

t R

es

is

ta

nc

(k

oh

m

s)

RS Setpoint Resistor

Summary of Contents for WHY5640

Page 1: ...Supply Low Cost 0 005 C Stability typical Linear PI Temperature Control High 2 2 A Output Current Control Above and Below Ambient Master Booster Operation Temperature Setpoint Heat and Cool Current L...

Page 2: ...the Wavelength Electronics website for the most accurate up to date and easy to use SOA calculator www teamwavelength com support design tools soa tc calculator Figure 1 shows the pin layout and descr...

Page 3: ...electric Cooler TEC or resistive heater connected directly to Pin 9 and Pin 13 on the controller as shown in Figure 3 NOTE Use a max of 5 V power supply with the test load shown Values shown can simul...

Page 4: ...on for the sensor RT and setpoint RS resistors 8 VDD Control Electronics Supply Input Power supply input for the WHY5640 s internal control electronics Supply range input for this pin is 5 to 26 VDC 9...

Page 5: ...Negative Temperature Coefficient thermistors OUTPUTA provides the heating current to the TEC for NTC sensors Connect OUTPUTA to the positive thermoelectric terminal when using Positive Temperature Co...

Page 6: ...o Pin 13 Full Temp Range IS 100 mA VS 0 7 VS 0 5 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 1 A VS 1 2 VS 1 0 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 2 A VS 1 6 VS 1 4 V P...

Page 7: ...operates directly with thermistors or RTD temperature sensors The fundamental operating principle is that the controller adjusts the TEC drive current in order to change the temperature of the sensor...

Page 8: ...UCTIONS STANDALONE NECESSARY EQUIPMENT The following equipment is required to configure the WHY5640 for basic operation WHY5640 Temperature Controller Thermistor or other temperature sensor Peltier ty...

Page 9: ...6 7 Use one of the sensors in the sections listed below SENSOR SELECTION Select a temperature sensor that is responsive around the desired operating temperature The temperature sensor should produce...

Page 10: ...th reference to Pin 1 AGND If the setpoint resistor RS is larger than the RTD resistance RRTD then the control loop will produce a heating current since the temperature sensed by the RTD is below cool...

Page 11: ...alues can be fine tuned experimentally Start with component values from Table 5 and operate the temperature controller system to determine if the load temperature settling time is satisfactory If it i...

Page 12: ...to Pin 1 AGND with a 1 5 k resistor when using RTDs LM335 type and AD590 type temperature sensors with a resistive heater Connect the resistive heater to Pins 9 and 13 to operate INCREASING OUTPUT CU...

Page 13: ...OLLERS 3 WHY5640 CONTROLLERS 4 WHY5640 CONTROLLERS 5 WHY5640 CONTROLLERS CURRENT LIMIT SET RESISTOR K RA RB 0 0 0 0 0 1 60 0 1 0 2 0 3 0 4 0 5 1 69 0 2 0 4 0 6 0 8 1 0 1 78 0 3 0 6 0 9 1 2 1 5 1 87 0...

Page 14: ...ll be operating within the internalheat dissipation Safe Operating Area SOA STEP 1 INSTALL WHY5640 ON THE WHY5690 WITH HEATSINK AND FAN Match up the notch Figure 12 on the WHY5640 with the silkscreen...

Page 15: ...lectronics to use the WHY5690 with other sensors or ranges STEP 5 ATTACHING THE VDD AND VS POWER SUPPLIES Ensure that the controller can be safely operated by checking the SOA Calculator website The V...

Page 16: ...board toggle switch The output is enabled when the green ON LED indicator is lit NOTE Before enabling the output make sure the RUN SET switch is set to the RUN position When enabled with this switch i...

Page 17: ...an wire configuration may be different than shown Fan can be rotated on the WHY so the location of the wires matches custom PCB WHY5640 and WHY5690 assembly instructions Figure 15 Match up the notch s...

Page 18: ...perating thermistor resistance RT For example for a 10 k thermistor operating at 25 C choose R1 to be 20 k NOTE Pin 9 OUTA is the heating current sink and Pin 13 OUTB is the cooling current sink Figur...

Page 19: ...S given a desired operating temperature measured in Celsius Rs 2R3 0 5 273 15 TCelsius 1mV K 10 Resistor R3 is a fixed resistance value that can be used to scale or adjust the setpoint resistor RS Sel...

Page 20: ...2 W 3 Heatsink and 3 5CFM fan required 2 W PWHY 9 W 4 Unsafe Operating Area PWHY Power internally dissipated in the WHY5640 1 2 3 4 5 10 15 20 25 0 0 0 5 1 0 1 5 2 0 Voltage Drop Across WHY VS VLOAD V...

Page 21: ...VS VDD VS S1 SPST LIM B LIM A SGL TURN SGL TURN CCW 0 AMPS CW 2 AMPS SGL TURN P GAIN I TERM OUT A OUT B SENSOR SENSOR VM1 VM2 VDD VS PGND COMMON OUTA OUTB LIMB LIMA VM2 VM1 S S R8 1k R7 1k CCW 0 AMPS...

Page 22: ...ple at 25 C a 10 k thermistor has a sensitivity of 43 mV C whereas an RTD sensor has a sensitivity of 4 mV C Proportional control term may be set too high Reduce the value of the proportional term For...

Page 23: ...40 UNC Airflow Direction MECHANICAL SPECIFICATIONS All Tolerances are 5 unless noted WEIGHTS WHY5640 0 6 oz WHS302 Heatsink 0 5 oz WXC303 4 Fan 0 3 oz PIN DIAMETER 0 020 PIN LENGTH 0 157 12 PIN MATERI...

Page 24: ...FAN COM VM2 VM1 CW 2 AMPS CCW 0 AMPS LIM B OUTPUT A SENSOR RUN RSET CW Decr CCW Incr sec I TERM PGND VS VDD OFF ENABLE ON WAVELENGTH ELECTRONICS For use with WHY5640 CW Decr CCW Incr P GAIN SET CCW D...

Page 25: ...BLUE PGND 2 ORANGE VS 3 RED VDD 4 BLACK COM 5 WHITE VM1 6 GREEN VM2 CABLING SPECIFICATIONS These cables are included with the WHY5690 Evaluation Board WTC3293 00101 INPUT CABLE MOLEX 43645 0400 MICRO...

Page 26: ...eering decompiling or disassembling this product NOTICE The information contained in this document is subject to change without notice Wavelength will not be liable for errors contained herein or for...

Reviews: