background image

© 2023

www.teamWavelength.com

11

WHY5640 TEMPERATURE CONTROLLER

When  calculating  component  values,  keep  in  mind  these 

points:

•  As k

T

  becomes  larger,  choosing  component  values 

becomes  more  difficult  because  larger  C

L

 values are 

required.

•  Keep R

L

  as  small  as  possible.  Higher  values  of  R

L

 

are  more  noisy,  and  values  above  4  MΩ  will  impact 

temperature control stability.

•  As R

L

 becomes smaller, C

L

 must be larger. Use a non-

polarized capacitor for C

L

.

Use Equation 1 to calculate the Proportional Gain, k

P

k

P

 = 4 

(   )

  amps / volt

R

L

R

G

(1)

Use Equation 2 to calculate the Integrator Time Constant, t

C

t

C

 = 

(    )

  seconds

R

G

C

L

4

(2)

Use Equation 3 to calculate the relationship between k

P

, t

C

and k

T

.

k

Ƭ

 = k

P

t

C

    

amp•seconds / volt

    

  

(3)

Use Equations 4, 5 , and 6 to relate k

T

 to component values.

k

Ƭ

 = C

L

R

L

    

amp•seconds / volt

    

  

(4)

 

(5)

(6)

STEP 5 

Fine Tuning R

G

, R

L

, and C

L

The R

G

, R

L

, and C

L

  component  values  can  be  fine-tuned 

experimentally. Start with component values from 

Table 5

and operate the temperature controller system to determine 

if the load temperature settling time is satisfactory. If it is not, 

then follow these steps to fine-tune the component values.

   1.  Short C

L

 to remove the integrator term.

   2.  Increase  the  proportional  gain  k

P

  by  increasing  R

L

 

until the temperature begins to oscillate; this is the 

Critical Gain value of the system. Measure the period 

of the oscillation in seconds.

   3.  Decrease R

L

 by half.

   4.  Use Equation 2 to calculate R

G

 and C

L

 so that the 

value of t

C

  is  slightly  greater  than  the  oscillation 

period measured above.

R

G

 =  

(   )

    ohms

4R

L

k

P

R

L

Gain

[ k

P

]

Sensor Type/

Thermal Load Speed

1.0 MΩ

5

Thermistor / Fast

Thermistor / Slow

2.0 MΩ

20

20

1.8 MΩ

50

50

RTD / Fast

RTD / Slow

2.2 MΩ

100

2.0 MΩ

AD590 or LM335 / Slow

AD590 or LM335 / Fast

4.0 MΩ

R

G

800 kΩ

400 kΩ

144 kΩ

88 kΩ

400 kΩ

320 kΩ

Integrator Time Constant

[ t

C

, seconds ]

C

L

15 µF

47 µF

15 µF

47 µF

10 µF

15 µF

3

4.5

1

0.53

4.5

1

Table 5.  Recommended Gain and Integrator Values

R

G

 =  

(   )

   ohms

4t

C

C

L

Summary of Contents for WHY5640

Page 1: ...Supply Low Cost 0 005 C Stability typical Linear PI Temperature Control High 2 2 A Output Current Control Above and Below Ambient Master Booster Operation Temperature Setpoint Heat and Cool Current L...

Page 2: ...the Wavelength Electronics website for the most accurate up to date and easy to use SOA calculator www teamwavelength com support design tools soa tc calculator Figure 1 shows the pin layout and descr...

Page 3: ...electric Cooler TEC or resistive heater connected directly to Pin 9 and Pin 13 on the controller as shown in Figure 3 NOTE Use a max of 5 V power supply with the test load shown Values shown can simul...

Page 4: ...on for the sensor RT and setpoint RS resistors 8 VDD Control Electronics Supply Input Power supply input for the WHY5640 s internal control electronics Supply range input for this pin is 5 to 26 VDC 9...

Page 5: ...Negative Temperature Coefficient thermistors OUTPUTA provides the heating current to the TEC for NTC sensors Connect OUTPUTA to the positive thermoelectric terminal when using Positive Temperature Co...

Page 6: ...o Pin 13 Full Temp Range IS 100 mA VS 0 7 VS 0 5 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 1 A VS 1 2 VS 1 0 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 2 A VS 1 6 VS 1 4 V P...

Page 7: ...operates directly with thermistors or RTD temperature sensors The fundamental operating principle is that the controller adjusts the TEC drive current in order to change the temperature of the sensor...

Page 8: ...UCTIONS STANDALONE NECESSARY EQUIPMENT The following equipment is required to configure the WHY5640 for basic operation WHY5640 Temperature Controller Thermistor or other temperature sensor Peltier ty...

Page 9: ...6 7 Use one of the sensors in the sections listed below SENSOR SELECTION Select a temperature sensor that is responsive around the desired operating temperature The temperature sensor should produce...

Page 10: ...th reference to Pin 1 AGND If the setpoint resistor RS is larger than the RTD resistance RRTD then the control loop will produce a heating current since the temperature sensed by the RTD is below cool...

Page 11: ...alues can be fine tuned experimentally Start with component values from Table 5 and operate the temperature controller system to determine if the load temperature settling time is satisfactory If it i...

Page 12: ...to Pin 1 AGND with a 1 5 k resistor when using RTDs LM335 type and AD590 type temperature sensors with a resistive heater Connect the resistive heater to Pins 9 and 13 to operate INCREASING OUTPUT CU...

Page 13: ...OLLERS 3 WHY5640 CONTROLLERS 4 WHY5640 CONTROLLERS 5 WHY5640 CONTROLLERS CURRENT LIMIT SET RESISTOR K RA RB 0 0 0 0 0 1 60 0 1 0 2 0 3 0 4 0 5 1 69 0 2 0 4 0 6 0 8 1 0 1 78 0 3 0 6 0 9 1 2 1 5 1 87 0...

Page 14: ...ll be operating within the internalheat dissipation Safe Operating Area SOA STEP 1 INSTALL WHY5640 ON THE WHY5690 WITH HEATSINK AND FAN Match up the notch Figure 12 on the WHY5640 with the silkscreen...

Page 15: ...lectronics to use the WHY5690 with other sensors or ranges STEP 5 ATTACHING THE VDD AND VS POWER SUPPLIES Ensure that the controller can be safely operated by checking the SOA Calculator website The V...

Page 16: ...board toggle switch The output is enabled when the green ON LED indicator is lit NOTE Before enabling the output make sure the RUN SET switch is set to the RUN position When enabled with this switch i...

Page 17: ...an wire configuration may be different than shown Fan can be rotated on the WHY so the location of the wires matches custom PCB WHY5640 and WHY5690 assembly instructions Figure 15 Match up the notch s...

Page 18: ...perating thermistor resistance RT For example for a 10 k thermistor operating at 25 C choose R1 to be 20 k NOTE Pin 9 OUTA is the heating current sink and Pin 13 OUTB is the cooling current sink Figur...

Page 19: ...S given a desired operating temperature measured in Celsius Rs 2R3 0 5 273 15 TCelsius 1mV K 10 Resistor R3 is a fixed resistance value that can be used to scale or adjust the setpoint resistor RS Sel...

Page 20: ...2 W 3 Heatsink and 3 5CFM fan required 2 W PWHY 9 W 4 Unsafe Operating Area PWHY Power internally dissipated in the WHY5640 1 2 3 4 5 10 15 20 25 0 0 0 5 1 0 1 5 2 0 Voltage Drop Across WHY VS VLOAD V...

Page 21: ...VS VDD VS S1 SPST LIM B LIM A SGL TURN SGL TURN CCW 0 AMPS CW 2 AMPS SGL TURN P GAIN I TERM OUT A OUT B SENSOR SENSOR VM1 VM2 VDD VS PGND COMMON OUTA OUTB LIMB LIMA VM2 VM1 S S R8 1k R7 1k CCW 0 AMPS...

Page 22: ...ple at 25 C a 10 k thermistor has a sensitivity of 43 mV C whereas an RTD sensor has a sensitivity of 4 mV C Proportional control term may be set too high Reduce the value of the proportional term For...

Page 23: ...40 UNC Airflow Direction MECHANICAL SPECIFICATIONS All Tolerances are 5 unless noted WEIGHTS WHY5640 0 6 oz WHS302 Heatsink 0 5 oz WXC303 4 Fan 0 3 oz PIN DIAMETER 0 020 PIN LENGTH 0 157 12 PIN MATERI...

Page 24: ...FAN COM VM2 VM1 CW 2 AMPS CCW 0 AMPS LIM B OUTPUT A SENSOR RUN RSET CW Decr CCW Incr sec I TERM PGND VS VDD OFF ENABLE ON WAVELENGTH ELECTRONICS For use with WHY5640 CW Decr CCW Incr P GAIN SET CCW D...

Page 25: ...BLUE PGND 2 ORANGE VS 3 RED VDD 4 BLACK COM 5 WHITE VM1 6 GREEN VM2 CABLING SPECIFICATIONS These cables are included with the WHY5690 Evaluation Board WTC3293 00101 INPUT CABLE MOLEX 43645 0400 MICRO...

Page 26: ...eering decompiling or disassembling this product NOTICE The information contained in this document is subject to change without notice Wavelength will not be liable for errors contained herein or for...

Reviews: