background image

© 2023

www.teamWavelength.com

15

WHY5640 TEMPERATURE CONTROLLER

STEP 2 

CONFIGURE THE HEAT AND COOL 

CURRENT LIMITS

Adjust the current limits using the LIMA and LIMB trimpots 

on the WHY5690. The evaluation board’s LIMA and LIMB 

trimpots  independently  adjust  the  heat  and  cool  current 

limits from zero to a full 2.0 A. Clockwise turns will increase 

the  limit,  and  counter-clockwise  turns  will  decrease  the 

current limit value. Use 

Table 7

 to adjust the heat and cool 

current limits. 

Do not exceed SOA limits

.

Table 7.  

LIMA and LIMB Current Limit Trimpot Configuration

SENSOR 

TYPE

LOAD TYPE

LIMA 

TRIMPOT

LIMB 

TRIMPOT

Thermistor

Thermoelectric

Cool Current 

Limit

Heat Current 

Limit

Thermistor

Resistive 

Heater

Turn Fully 

CCW

Heat Current 

Limit

STEP 3 

CONNECT THE THERMAL LOAD

Connect the WHY5690 outputs (OUTPUT A or OUTPUT B) 

to your thermoelectric or resistive heater using 

Table 8

 as 

a guide.

Table 8.  

Output Configuration

SENSOR 

TYPE

LOAD 

TYPE

OUTPUT A

OUTPUT B

Thermistor

Thermo-

electric

Negative TEC 

Terminal

Positive TEC 

Terminal

Thermistor Resistive 

Heater

Quick Connection:

 Simply connect 

the resistive heater to OUTA and 

OUTB. Adjust the cooling current limit 

to zero by turning the LIMA trimpot 

fully counterclockwise.

Maximum Voltage Connection:

 

Connect one side of the resistive 

heater to OUTB and the other side to 

the voltage source V

S

.

RTD

Resistive 

Heater

Maximum Voltage Connection: 

Connect one side of the resistive 

heater to OUTA and the other side to 

the voltage source V

S

.

NOTE: Adjust the cooling current limit 

to zero by turning the LIMB trimpot 

fully counterclockwise.

STEP 4 

CONNECT YOUR TEMPERATURE 

SENSOR

Connect the temperature sensor to the  and Sensor- 

leads on the 4-wire output cable. The default configuration 

of the WHY5690 allows for operation of the board with NTC 

thermistors in the range of 0 - 20 kΩ.

NOTE:

 Contact Wavelength Electronics to use the WHY5690 

with other sensors or ranges.

STEP 5 

ATTACHING THE V

DD

 AND V

S

 

POWER SUPPLIES

Ensure that the controller can be safely operated by 

checking the SOA Calculator 

website

. The V

DD

 power 

supply is used to power the WHY5640 internal control 

electronics  and  must  be  capable  of  supplying  100  mA  of 

current. The V

S

 power supply is used to power the WHY5640 

output H-Bridge and must be capable of supplying a current 

greater than the LIMA and LIMB current limit settings. For 

simple operation tie V

DD

 to V

S

. A separate V

S

 power supply 

allows the H-Bridge to operate at a voltage different from the 

4.5 V required by the V

DD

 supply. Select V

S

 approximately 

2.5 V above the maximum voltage drop across OUTA and 

OUTB  to  reduce  the  power  dissipation  in  the  WHY5640 

component and minimize your heatsinking requirements. Set 

the ENABLE Switch to OFF before powering the WHY5640. 

Connect both power supplies via the PGND line in the input 

connector. For high impedance resistance loads, a higher 

voltage V

S

 power supply may be required.

!

The COMMON (COM) terminal on the WHY5690 

is not intended to act as a power connection, 

but  as  a  low  noise  ground  reference  for 

monitor signals.

Once power is connected to the Evaluation Board, all 

control electronics are powered, however there is no 

drive current available to other components until the 

WHY5640 Enable switch is ON.

STEP 6 

ADJUST THE LOOP 

COMPENSATION PROPORTIONAL GAIN AND 
INTEGRATOR TIME CONSTANT

Adjust the two trimpots named “P GAIN” and “I TERM” to 

change the proportional gain and integrator time constant 

for  the  control  loop  to  optimize  the  control  parameters  of 

your  system.  The  “I  TERM”  adjustment  affects  both  the 

proportional and integrator parameters while the proportional 

setting affects only the proportional gain. 

For a better explanation of how the I term and P term trimpots 

affect  the  parameters  of  the  control  system,  see 

STEP 4

 

on 

page 10

.  The  I  term  adjusts  R

G

 in the equations on 

page 10

, while the P term adjusts R

L

. C

L

 and R

L

 are both 

related to R

G

 in 

Equation 5

 and 

Equation 6

.

Summary of Contents for WHY5640

Page 1: ...Supply Low Cost 0 005 C Stability typical Linear PI Temperature Control High 2 2 A Output Current Control Above and Below Ambient Master Booster Operation Temperature Setpoint Heat and Cool Current L...

Page 2: ...the Wavelength Electronics website for the most accurate up to date and easy to use SOA calculator www teamwavelength com support design tools soa tc calculator Figure 1 shows the pin layout and descr...

Page 3: ...electric Cooler TEC or resistive heater connected directly to Pin 9 and Pin 13 on the controller as shown in Figure 3 NOTE Use a max of 5 V power supply with the test load shown Values shown can simul...

Page 4: ...on for the sensor RT and setpoint RS resistors 8 VDD Control Electronics Supply Input Power supply input for the WHY5640 s internal control electronics Supply range input for this pin is 5 to 26 VDC 9...

Page 5: ...Negative Temperature Coefficient thermistors OUTPUTA provides the heating current to the TEC for NTC sensors Connect OUTPUTA to the positive thermoelectric terminal when using Positive Temperature Co...

Page 6: ...o Pin 13 Full Temp Range IS 100 mA VS 0 7 VS 0 5 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 1 A VS 1 2 VS 1 0 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 2 A VS 1 6 VS 1 4 V P...

Page 7: ...operates directly with thermistors or RTD temperature sensors The fundamental operating principle is that the controller adjusts the TEC drive current in order to change the temperature of the sensor...

Page 8: ...UCTIONS STANDALONE NECESSARY EQUIPMENT The following equipment is required to configure the WHY5640 for basic operation WHY5640 Temperature Controller Thermistor or other temperature sensor Peltier ty...

Page 9: ...6 7 Use one of the sensors in the sections listed below SENSOR SELECTION Select a temperature sensor that is responsive around the desired operating temperature The temperature sensor should produce...

Page 10: ...th reference to Pin 1 AGND If the setpoint resistor RS is larger than the RTD resistance RRTD then the control loop will produce a heating current since the temperature sensed by the RTD is below cool...

Page 11: ...alues can be fine tuned experimentally Start with component values from Table 5 and operate the temperature controller system to determine if the load temperature settling time is satisfactory If it i...

Page 12: ...to Pin 1 AGND with a 1 5 k resistor when using RTDs LM335 type and AD590 type temperature sensors with a resistive heater Connect the resistive heater to Pins 9 and 13 to operate INCREASING OUTPUT CU...

Page 13: ...OLLERS 3 WHY5640 CONTROLLERS 4 WHY5640 CONTROLLERS 5 WHY5640 CONTROLLERS CURRENT LIMIT SET RESISTOR K RA RB 0 0 0 0 0 1 60 0 1 0 2 0 3 0 4 0 5 1 69 0 2 0 4 0 6 0 8 1 0 1 78 0 3 0 6 0 9 1 2 1 5 1 87 0...

Page 14: ...ll be operating within the internalheat dissipation Safe Operating Area SOA STEP 1 INSTALL WHY5640 ON THE WHY5690 WITH HEATSINK AND FAN Match up the notch Figure 12 on the WHY5640 with the silkscreen...

Page 15: ...lectronics to use the WHY5690 with other sensors or ranges STEP 5 ATTACHING THE VDD AND VS POWER SUPPLIES Ensure that the controller can be safely operated by checking the SOA Calculator website The V...

Page 16: ...board toggle switch The output is enabled when the green ON LED indicator is lit NOTE Before enabling the output make sure the RUN SET switch is set to the RUN position When enabled with this switch i...

Page 17: ...an wire configuration may be different than shown Fan can be rotated on the WHY so the location of the wires matches custom PCB WHY5640 and WHY5690 assembly instructions Figure 15 Match up the notch s...

Page 18: ...perating thermistor resistance RT For example for a 10 k thermistor operating at 25 C choose R1 to be 20 k NOTE Pin 9 OUTA is the heating current sink and Pin 13 OUTB is the cooling current sink Figur...

Page 19: ...S given a desired operating temperature measured in Celsius Rs 2R3 0 5 273 15 TCelsius 1mV K 10 Resistor R3 is a fixed resistance value that can be used to scale or adjust the setpoint resistor RS Sel...

Page 20: ...2 W 3 Heatsink and 3 5CFM fan required 2 W PWHY 9 W 4 Unsafe Operating Area PWHY Power internally dissipated in the WHY5640 1 2 3 4 5 10 15 20 25 0 0 0 5 1 0 1 5 2 0 Voltage Drop Across WHY VS VLOAD V...

Page 21: ...VS VDD VS S1 SPST LIM B LIM A SGL TURN SGL TURN CCW 0 AMPS CW 2 AMPS SGL TURN P GAIN I TERM OUT A OUT B SENSOR SENSOR VM1 VM2 VDD VS PGND COMMON OUTA OUTB LIMB LIMA VM2 VM1 S S R8 1k R7 1k CCW 0 AMPS...

Page 22: ...ple at 25 C a 10 k thermistor has a sensitivity of 43 mV C whereas an RTD sensor has a sensitivity of 4 mV C Proportional control term may be set too high Reduce the value of the proportional term For...

Page 23: ...40 UNC Airflow Direction MECHANICAL SPECIFICATIONS All Tolerances are 5 unless noted WEIGHTS WHY5640 0 6 oz WHS302 Heatsink 0 5 oz WXC303 4 Fan 0 3 oz PIN DIAMETER 0 020 PIN LENGTH 0 157 12 PIN MATERI...

Page 24: ...FAN COM VM2 VM1 CW 2 AMPS CCW 0 AMPS LIM B OUTPUT A SENSOR RUN RSET CW Decr CCW Incr sec I TERM PGND VS VDD OFF ENABLE ON WAVELENGTH ELECTRONICS For use with WHY5640 CW Decr CCW Incr P GAIN SET CCW D...

Page 25: ...BLUE PGND 2 ORANGE VS 3 RED VDD 4 BLACK COM 5 WHITE VM1 6 GREEN VM2 CABLING SPECIFICATIONS These cables are included with the WHY5690 Evaluation Board WTC3293 00101 INPUT CABLE MOLEX 43645 0400 MICRO...

Page 26: ...eering decompiling or disassembling this product NOTICE The information contained in this document is subject to change without notice Wavelength will not be liable for errors contained herein or for...

Reviews: