
Holdover accuracy (ppm) =
± 6.4 mV × Kv × 1e6
VCXO Frequency
SNAS605AR – MARCH 2013 – REVISED DECEMBER 2015
9.3.7.3 Exiting Holdover
Holdover mode can be exited in one of two ways.
•
Manually, by programming the device from the host.
•
Automatically, By a clock operating within a specified ppm of the current PLL1 frequency on the active clock
input.
9.3.7.4 Holdover Frequency Accuracy and DAC Performance
When in holdover mode, PLL1 will run in open loop and the DAC will set the CPout1 voltage. If Fixed CPout1
mode is used, then the output of the DAC will be a voltage dependant upon the MAN_DAC register. If Tracked
CPout1 mode is used, then the output of the DAC will be the voltage at the CPout1 pin before holdover mode
was entered. When using Tracked mode and MAN_DAC_EN = 1, during holdover the DAC value is loaded with
the programmed value in MAN_DAC, not the tracked value.
When in Tracked CPout1 mode, the DAC has a worst case tracking error of ±2 LSBs once PLL1 tuning voltage is
acquired. The step size is approximately 3.2 mV, therefore the VCXO frequency error during holdover mode
caused by the DAC tracking accuracy is ±6.4 mV × Kv, where Kv is the tuning sensitivity of the VCXO in use.
Therefore, the accuracy of the system when in holdover mode in ppm is:
(1)
Example: consider a system with a 19.2 MHz clock input, a 153.6 MHz VCXO with a Kv of 17 kHz/V. The
accuracy of the system in holdover in ppm is:
±0.71 ppm = ±6.4 mV × 17 kHz/V × 1e6 / 153.6 MHz
(2)
It is important to account for this frequency error when determining the allowable frequency error window to
cause holdover mode to exit.
9.3.7.5 Holdover Mode - Automatic Exit of Holdover
The LMK048xx device can be programmed to automatically exit holdover mode when the accuracy of the
frequency on the active clock input achieves a specified accuracy. The programmable variables include
PLL1_WND_SIZE and HOLDOVER_DLD_CNT.
See
Digital Lock Detect Frequency Accuracy
to calculate the register values to cause holdover to automatically
exit upon reference signal recovery to within a user specified ppm error of the holdover frequency.
It is possible for the time to exit holdover to vary because the condition for automatic holdover exit is for the
reference and feedback signals to have a time/phase error less than a programmable value. Because it is
possible for two clock signals to be very close in frequency but not close in phase, it may take a long time for the
phases of the clocks to align themselves within the allowable time/phase error before holdover exits.
Copyright © 2013–2015, Texas Instruments Incorporated
45
Product Folder Links: