background image

 

 

 

3.        Operation in respect to the RES design

 

In  “Stand-alone”  systems

,  the  renewable source  –  basically PV  arrays -  is  the  only charging source available 

for the  battery. In  some systems, an external source  -  like  diesel  -  can be  used but  this is  not  within the  basic 
design principle, e.g. the source is engaged only intermittently and manually by the user, to serve excessive loads 
or to maintain the batteries with equalizing charges. 
Two types of charge controllers can be used: 

 

On-Off  PV  controllers.  The  controller  interrupts  the  charging  current  from  the  PV  array  (off  state)  when  the 
battery voltage reaches the high regulation point (e.g 2.45Vpc) to connect it back (on state) when the voltage 
drops to the low regulation point (e.g. 2.35Vpc). This type is not recommended for VRLA batteries. 

 

Constant  Voltage  type  (PWM  method  is  also  included  here).  Once  the  battery  voltage  reaches the  regulation 

point, the  controller limits  the  charging current to  keep  the  voltage constant at  this  level, given that  enough 
power is available from the renewable source.  Two sub types may be defined here: 

One voltage step controller: There is only one regulation point. 

Two  voltage  step  controller:  There  are  two  regulation  points.  Initially  the  controller  maintains  an 

elevated voltage to recharge the battery fast (absorption stage) then, after certain time or other criteria, 
it steps back to a lower voltage to prevent unnecessary overcharging (floating stage) 

 

In  “Hybrid”  systems

,  the  renewable  source  size  is  smaller  than  the  application  load.  There  is  always  an 

independent source available - diesel or grid  – to recharge the battery in every cycle, once a minimum state of 
charge  has  been  reached.  The  same  source  can  be  also  engaged,  either  automatically  at  regular  intervals  or 
manually  when  required,  to  maintain  the  battery  with  equalizing  charges.  Only  Constant  Voltage  controllers 
(usually  with two voltage steps) shall be used here. 

 

3.1.      Discharging

 

No restriction on the discharge current is required, as far as the connections are properly sized and the battery 
temperature stays within the allowable limits. 

 

The maximum allowable discharge per cycle (Max Daily DoD - MDDOD) is 

    

20% for Stand-alone and 

    

60% for Hybrid systems 

For discharge currents lower than 0.1*C10, the  MDDOD is expressed in  %  of the  C10  value. For example, the 
c e l l   “ RES 6 SOPzV 850” has C10=687Ah therefore a 60% MDDoD means 413 Ah extractable per day. 

 

The  maximum  allowable  DoD  (MDOD)  is  80%  of  the  maximum  available  capacity,  unless otherwise has been 
approved by Systems Sunlight. 

 

Overdischarge Protection

 

The  MDOD  limit  control  should  not  be  implemented  solely  through  control  systems  based  on  Ah-counters 

(integrating the ampere-hours into and out of the battery). Monitoring the battery voltage against the low-voltage 
disconnect setting (LVD) should always be included. 

 

The MDDOD limit control - for hybrid applications - can be realized either by Ah-counters control units or/and by 
battery voltage monitoring. For Stand-alone systems see the note below for the Array to Load ratio. 

The graphs at the end of this document give the battery voltage to DoD relation as a guidance for the initial LVD 

settings  (first-try  settings).  The  system  designer  or  installer  shall  adjust  and  confirm  them  upon  the  actual 

conditions of the system. For systems where the voltage is measured at the controller and not on the battery, the 

voltage drop on the connections to the battery shall be considered. 

For critical systems with the load directly connected on the battery, an alarm or other method of user feedback 
must be included to give information on the battery status when DoD exceeds 60 to 80%. 

 

Array to Load ratio for Stand-alone systems

 

In Stand-alone systems, the renewable source shall be sufficiently oversized against the application load in order 
to avoid excessive cycling near the MDOD which limits dramatically the battery’s life expectancy. The ampere hour 
output  of  the  PV  array (or  other  renewable  source) over  the  load  ampere hours for  the  minimum design  month 

(month with minimum PV output) should be at least 1.3 (acc. to IEEE1013) to recharge the battery while the daily 
load is supplied. 

 

Low-voltage reconnect (LVR) for Stand-alone systems 
The battery voltage at which the load is reconnected after a low-voltage disconnect shall be above 2.2 Vpc 

 

 
 
 

 

Summary of Contents for RES SOPzV Series

Page 1: ...ply with the OPERATING INSTRUCTIONS repairs carried out with non approved spare parts or unauthorized interference with the battery will invalidate any claim for warranty SYSTEMS SUNLIGHT S A Headquarters 2 Ermou Nikis Str Syntagma Square 105 63 Athens Attica Greece T 30 210 6245400 F 30 210 6245409 Manufacturing Plant Neo Olvio 672 00 Xanthi Greece T 30 25410 48100 F 30 25410 95446 Service Depart...

Page 2: ...tically up and equally on each of the poles Never drag or roll the battery since damage will be caused Do not apply force to the safety valve during handling The batteries are fully charged before shipment Do not short circuit Check for evidence of leakage All cells with visible defects such as cracked jars loose terminal posts or other unrecoverable problems shall be rejected 2 Installation and c...

Page 3: ... correct torque loading of 22 Nm Electrical connections to the battery and between cells on separate levels or racks should be made to minimize mechanical strain on battery terminal posts For systems where the total battery voltage is measured at the controller use oversized cables to the battery in order to minimize the voltage drop Check the battery s total voltage It should match the number of ...

Page 4: ...erature stays within the allowable limits The maximum allowable discharge per cycle Max Daily DoD MDDOD is 20 for Stand alone and 60 for Hybrid systems For discharge currents lower than 0 1 C10 the MDDOD is expressed in of the C10 value For example the cell RES 6 SOPzV 850 has C10 687Ah therefore a 60 MDDoD means 413 Ah extractable per day The maximum allowable DoD MDOD is 80 of the maximum availa...

Page 5: ...r Connect the battery to the controller and leave it for 1 2 weeks while the application load is disconnected Full charge criteria are not applicable here Use the following voltage settings On off controllers 20 to 0 C 0 to 35 C 35 C High disconnect voltage Vr 2 55V 2 45V 2 40V Low restart voltage Vrr 2 35V 2 30V 2 25V Constant Voltage controllers 20 to 0 C 0 to 35 C 35 C Regulation voltage Vr 2 4...

Page 6: ...over one month Controller type Setting 20 to 0 C 0 to 15 C 15 to 35 C 35 C Constant Voltage one step Vr 2 50V 2 45V 2 40V 2 35V Constant Voltage two steps absorption maximum 2 h per day 2 55V 2 50V 2 45V 2 40V float 2 45V 2 40V 2 35V 2 30V On off High voltage Vr 2 55V 2 50V 2 45V 2 40V Low voltage Vrr 2 35V 2 30V 2 30V 2 25V For systems with oversized PV array and low MDDOD 5 use lower settings se...

Page 7: ... the minimum system voltage In Stand alone systems it is recommended to use controllers with adjustable LVD setting to the battery temperature higher LVD for lower temperature During operation the temperature difference between individual battery cells should be below 3o K 3 5 Current limits The maximum charging current during the bulk charging is 0 2 x C10 while the battery voltage is below the g...

Page 8: ...m To avoid damage periodical equalizing charging see 3 2 1 or permanent float charging has to be made 8 Transport RES SOPzV cells are protected against short circuit If properly packed batteries are no dangerous goods according to the international regulations for dangerous goods on road and on rail ADR and RID Battery Voltage in relation to DoD as a guidance for the initial LVD settings first try...

Reviews: