System Overview
R&S
®
ZVA
86
Getting Started 1145.1090.62 ─ 13
The notation of a general S-parameter is S
<mout><min><out><in>
, where <mout> and <min>
denote the output and input port modes, <out> and <in> denote the output and input
port numbers.
Meaning of 2-port mixed mode S-parameters
The mixed mode 2-port S-parameters can be interpreted as follows:
●
S
<mout><min>11
is the mixed mode input reflection coefficient, defined as the ratio of
the wave quantities b
1
(mode mout) to a
1
(mode min), measured at PORT 1 (for-
ward measurement with matched output and a
2
= 0).
●
S
<mout><min>21
is the mixed mode forward transmission coefficient, defined as the
ratio of the wave quantities b
2
(mode mout) to a
1
(mode min) (forward measure-
ment with matched output and a
2
= 0).
●
S
<mout><min>12
is the mixed mode reverse transmission coefficient, defined as the
ratio of the wave quantities b
1
(mode mout) (reverse measurement with matched
input, b
1
' in the figure above and a
1
= 0) to a
2
(mode min).
●
S
<mout><min>22
is the mixed mode output reflection coefficient, defined as the ratio of
the wave quantities b
2
(mode mout) (reverse measurement with matched input, b
2
'
in the figure above and a
1
= 0) to a
2
(mode min), measured at PORT 2.
If <mout> is different from <min>, the S-parameters are called mode conversion fac-
tors.
3.3.2.14
Mixed Mode Parameters for Different Test Setups
Which types of mixed mode parameter are available depends on the measured device
and the port configuration of the analyzer. The following examples of mixed more
parameters can all be obtained with a 4-port analyzer.
1. DUT with only single-ended ports: No balanced port definition necessary, the ana-
lyzer provides single-ended multiport parameters.
2. DUT with one balanced port: Only reflection and mode conversion measurements
with differential and common mode parameters.
Measured Quantities