Power integrations Scale-2 1SC0450E2B0 Applications Manual Download Page 15

SCALE™-2 1SC0450E2B0 

   

 

Preliminary Description & Application Manual 

 

www.power.com/igbt-driver 

Page 15 

Active Clamping (ACL)  

Active  clamping  is  a  technique  designed  to  partially  turn  on  the  power  semiconductor  as  soon  as  the 
collector-emitter  voltage  exceeds  a  predefined  threshold.  The  power  semiconductor  is  then  kept  in  linear 

operation. 

Basic  active  clamping  topologies  implement  a  single  feedback  path  from  the  IGBT’s  collector  through 

transient voltage suppressor devices (TVS) to the IGBT gate. The 1SC0450E2B0 supports Advanced Active 
Clamping from Power Integrations, where the feedback is also provided to the driver’s secondary side at pin 
ACL (Fig. 6): as soon as the voltage at pin ACL exceeds about 1.3V, the turn-off MOSFET is progressively 

switched  off  in  order  to  improve  the  effectiveness  of  the  active  clamping  and  to  reduce  the  losses  in  the 
TVS. The turn-off MOSFET is turned completely off when the voltage at pin ACL approaches 20V (measured 
to COM). 

It  is  recommended  to  use  the  circuit  shown  in  Fig.  6.  The  following  parameters  must  be  adapted  to  the 

application: 

 

For TVS D

1

, D

2

 it is recommended to use: 

-

 

3300V  IGBTs  with  DC-link  voltages  up  to  2200V:  Seven  unidirectional  300V  TVS  and  one 
bidirectional 350V TVS. Good clamping results can be obtained with seven unidirectional TVS 

P6SMB300A and one bidirectional TVS P6SMB350CA from Diotec. 

-

 

4500V  IGBTs  with  DC-link  voltages  up  to  3200V:  Eight  unidirectional  400V  TVS  and  one 

bidirectional 350V TVS. Good clamping results can be obtained with eight unidirectional TVS 
P6SMB400A and one bidirectional TVS P6SMB350CA from Diotec. 

 

-

 

6500V  IGBTs  with  DC-link  voltages  up  to  4350V:  Ten  unidirectional  440V  TVS  and  one 

bidirectional 440V TVS. Good clamping results can be obtained with ten unidirectional TVS 
P6SMB440A and one bidirectional TVS P6SMB440CA from Diotec. 

 

At  least  one  bidirectional  TVS  (D

1

)  (≥300V  for  3300V  IGBTs,  ≥350V  for  4500V  IGBTs,  ≥440V  for 

6500V IGBTs) must be used in order to avoid negative current flowing through the TVS chain during 
turn-on of the anti-parallel diode of the IGBT module due to its forward recovery behavior. Such  a 

current  could,  depending  on  the  application,  lead  to  under-voltage  of  the  driver  secondary-side 
voltage VISO to VE (15V). 
Note that it is possible to modify the number of TVS in a chain. The active clamping efficiency can 
be improved by increasing the number of TVS used in a chain if the total breakdown voltage remains 

at the same value. Note also that the active clamping efficiency is highly dependent on the type of 
TVS used (e.g. manufacturer). 

 

D

3

 and D

4

: It is recommended to use Schottky diodes with blocking voltages >35V (>1A depending on 

the application). 

Please note that the diodes D

3

 and D

4

 must not be omitted if Advanced Active Clamping is used.  

If active clamping is not used, the diode D

4

 can be omitted. The pin ACLx must then be left open. 

Gate turn-on (GH) and turn-off (GL) terminals 

These terminals allow the turn-on (GH) and turn-off (GL) gate resistors to be connected to the gate of the 

power semiconductor. The GH and GL pins are available as separated terminals in order to set the turn-on 
and turn-off resistors independently without the use of an additional diode. Please refer to the  driver data 

sheet /3/ for the limit values of the gate resistors used. 

A resistor between GL and COM of 6.8kΩ (other values are also possible) may be used in order to provide a 

low-impedance  path  from  the  IGBT  gate  to  the  emitter  even  if  the  driver  is  not  supplied  with  power.  No 
static load (e.g. resistors) must be placed between GL and the emitter terminal VE. 

Summary of Contents for Scale-2 1SC0450E2B0

Page 1: ...Up to four parallel connected IGBT modules can be driven to cover higher power ratings Multi level topologies involving 3300V or 4500V IGBTs with higher isolation requirements can also be easily supported by the 1SC0450E2B0 The 1SC0450E2B0 supports maximal design flexibility as no fiber optic links are assembled on the driver board Gate drive input and output signals are provided over dedicated el...

Page 2: ...mitter VE and COM terminals 11 Reference terminal REF 11 Collector sense VCE 11 Input for adjusting the turn off delay in fault condition CSHD 14 Active Clamping ACL 15 Gate turn on GH and turn off GL terminals 15 Gate Boosting Power Supply VGB 16 Gate Boosting Signal GBS 16 Gate Drive Input IN 16 Status Feedback Fault input OUT 16 How Do 1SC0450E2B0 SCALE 2 Drivers Work in Detail 19 Power supply ...

Page 3: ...SCALE 2 1SC0450E2B0 Preliminary Description Application Manual www power com igbt driver Page 3 Ordering Information 24 Information about Other Products 24 Power Integrations Sales Offices 25 ...

Page 4: ...pment of the proven SCALE 1 technology 2 The 1SC0450E2B0 targets medium and high power IGBT applications up to 6500V The driver supports switching frequencies up to 10kHz with best in class efficiency The 1SC0450E2B0 comprises a complete single channel IGBT driver core fully equipped with an isolated DC DC converter electrical interface for the external use of fiber optic transceivers short circui...

Page 5: ...SCALE 2 1SC0450E2B0 Preliminary Description Application Manual www power com igbt driver Page 5 Mechanical Dimensions Fig 3 Interactive 3D drawing of the 1SC0450E2B0 ...

Page 6: ... the board are 60mm x 90mm The total height of the driver is maximum 27 5mm measured from the bottom of the pin bodies to the top of the populated PCB Note that the mechanical fixing points are placed in the clearance and creepage paths Insulated fixation material screws distance bolts must therefore be used in order not to reduce these The fixing points support M3 screw size Recommended diameter ...

Page 7: ...ting signal 12 VE IGBT emitter 13 GL Gate low pulls gate low through turn off resistor 14 ACL Active clamping feedback leave open if not used 15 REF Set VCE detection threshold through resistor to VE 16 VCE VCE sense connect to IGBT collector through impedance network 17 COM Secondary side ground 18 VISO DC DC output 19 COM Secondary side ground 20 COM Secondary side ground 21 COM Secondary side g...

Page 8: ...supply terminals VCC and VDC 2x ground terminals GND 1x status output SO indicating a fault during primary side under voltage All inputs and outputs are ESD protected VCC terminal The driver has one VCC terminal on the interface connector to supply the primary side electronics with 15V VDC terminal The driver has one VDC terminal on the interface connector to supply the DC DC converter for the sec...

Page 9: ...al pull up resistor of 10kΩ keeps the output level at the voltage level of VCC When a primary side supply under voltage is detected the status output SO goes to low connected to GND The SO output is automatically reset returning to the voltage level of VCC when the under voltage on the primary side disappears The maximum SO current in a fault condition must not exceed the value specified in the dr...

Page 10: ...nal VISO 1x emitter terminal VE 1x secondary side ground COM 1x collector sense terminal VCE 1x reference terminal REF for short circuit protection 1x input terminal CSHD to set the turn off delay after fault 1x active clamping terminal ACL 1x turn on gate terminal GH 1x turn off gate terminal GL 1x gate boosting power supply VGB 1x gate boosting signal GBS The two 8 pin interface connectors combi...

Page 11: ...c strength 25V are recommended No static load must be applied between VISO and VE or between VE and COM A static load can be applied between VISO and COM if necessary Reference terminal REF The reference terminal REF allows the threshold to be set for short circuit protection with a resistor placed between REF and VE Rth of Fig 6 An internal resistor of 68kΩ sets the default threshold value to 10 ...

Page 12: ...tion The recommended range for the overall capacitance value Ctot is given in Eq 7 Ctot 1 1 Cvcek p k 1 1 4pF Eq 7 All capacitances Cvcek with k 2 must have the same value The capacitance Cvce1 must be chosen such that the Eq 8 is satisfied Cvce1 Ctot 0 7 0 9 Rtot Rvce1 Rvce2 Eq 8 The maximum voltage rating of the resistors and capacitors used must not be exceeded Peak values and average values mu...

Page 13: ...GBTs with DC link voltages up to 3200V Rvce1 Rvce2 Rvce20 220kΩ 500mW 400Vpeak 1 Rdiv 620kΩ 0603 1 Cvce1 15pF C0G 1000V 5 Cvce2 Cvce3 Cvce10 22pF C0G 630V 5 Ca 22pF C0G 50V 5 Rth not assembled Ra refer to Table 2 below 0603 1 This setup uses 20 resistors Rvcei and 10 capacitors Cvcek and leads to a static desaturation detection threshold of about 150V VDC Link Ra 68kΩ Ra 91kΩ Ra 120kΩ 3200V 5 1µs ...

Page 14: ...he setup under worst case conditions maximum DC link voltage maximum collector current and highest IGBT junction temperature Please also refer to AN 1101 4 for more information Input for adjusting the turn off delay in fault condition CSHD The terminal CSHD allows the delay in turning off the IGBT after a fault detection on the driver s secondary side short circuit undervoltage external fault inpu...

Page 15: ...ctional 440V TVS Good clamping results can be obtained with ten unidirectional TVS P6SMB440A and one bidirectional TVS P6SMB440CA from Diotec At least one bidirectional TVS D1 300V for 3300V IGBTs 350V for 4500V IGBTs 440V for 6500V IGBTs must be used in order to avoid negative current flowing through the TVS chain during turn on of the anti parallel diode of the IGBT module due to its forward rec...

Page 16: ...n off command Also refer to Table 5 and Fig 8 It is recommended to use the input circuitry of Fig 7 The drive signal is then not inverted to the gate output according to Table 5 If other drive circuits are used the following information must be considered The absolute maximum ratings of the driver data sheet 3 must be respected The logic level thresholds of the input IN are given in the driver dat...

Page 17: ... is acknowledged by the driver with a short pulse OUT is switched to low for a short period of time refer to driver data sheet 3 for details As this can be observed by the host controller this method allows simple and continuous monitoring of all drivers and fiber optic links of the system Fig 8 Fig 8 Driver behavior and status feedback in normal operation Refer to Fig 7 for the recommended comman...

Page 18: ... during the delay to clear the fault state 8μs Tcshd The driver turns the IGBT off after the response time delay time Tcshd The IGBT can be turned on again by applying a negative edge to the input IN after the fault status has disappeared Fig 9 Driver behavior and status feedback in the IGBT short circuit condition In case of a secondary side supply under voltage fault the fault status remains act...

Page 19: ...er to Input for adjusting the turn off delay in fault condition CSHD to keep it in the off state the channel is blocked and a fault condition is monitored on the status output OUT until the supply voltage exceeds the reference level for enabling Parallel connection of IGBT modules It is recommended to drive parallel connected IGBT modules using a single 1SC0450E2B0 driver core Appropriate gate cir...

Page 20: ... adding an external capacitor Cgb The minimum value Cgb of the external capacitor can be calculated according to Eq 11 Cgb nF Qgb nC VGH V VGL V 22 Cgb 0 Eq 11 where Qgb stands for the required boosting gate charge and has to be determined according to the IGBT module gate charge requirements VGH and VGL are the absolute values of the turn on and turn off voltage at the driver output respectively ...

Page 21: ...ge 21 Fig 11 Gate boosting circuit principle highlighted in red color Fig 12 Gate boosting signals How to disable gate boosting Pins VGB and GBS must be left open Note that the voltage values of the pins VGB and GBS are 50V and 35V respectively referred to COM creepage and clearance distances ...

Page 22: ...with SCALE 2 and SCALE 2 Gate Driver Cores Power Integrations 5 Application note AN 0904 Direct Paralleling of SCALE 2 Gate Driver Cores Power Integrations 6 Application note AN 0901 Methodology for Controlling Multi Level Converter Topologies with SCALE 2 IGBT Drivers Power Integrations 7 Paper Safe Driving of Multi Level Converters Using Sophisticated Gate Driver Technology PCIM Asia June 2013 N...

Page 23: ...ity The obligation to high quality is one of the central features laid down in the mission statement of Power Integrations Switzerland GmbH Our total quality management system assures state of the art processes throughout all functions of the company certified by ISO9001 2008 standards Legal Disclaimer The statements technical information and recommendations contained herein are believed to be acc...

Page 24: ...6500V IGBTs Product home page www power com igbt driver go 1SC0450 Refer to www power com igbt driver go nomenclature for information on driver nomenclature Information about Other Products For other driver cores Direct link www power com igbt driver go cores For other drivers product documentation and application support Please click www power com 2014 2017 Power Integrations Switzerland GmbH All...

Page 25: ...Email igbt driver sales power com INDIA Bangalore 1 14th Main Road Vasanthangar Bangalore 560052 India Tel 1 91 80 4113 8020 Tel 2 91 80 4113 8028 Fax 91 80 4113 8023 Email indiasales power com INDIA Mumbai Unit 106 107 Sagar Tech Plaza B Sakinaka Andheri Kurla Road Mumbai Maharashtra 400072 India Tel 1 91 22 4003 3700 Tel 2 91 22 4003 3600 Email indiasales power com INDIA New Dehli 45 Top Floor O...

Reviews: