background image

AN10907

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Application note

Rev. 1 — 28 December 2010 

80 of 82

NXP Semiconductors

AN10907

TEA1613T resonant power supply control IC

15. Tables

Table 1.  Pinning overview . . . . . . . . . . . . . . . . . . . . . . . .6
Table 2.  TEA1613T driver specifications . . . . . . . . . . . .27

Table 3.  Overview of protection functions with links . . . 59
Table 4.  Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 78

16. Figures

Fig 1. 

Basic application diagram TEA1613T . . . . . . . . . .9

Fig 2. 

TEA1613T with application block diagram 
(part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Fig 3. 

TEA1613T with application block diagram 
(part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Fig 4. 

Basic overview internal IC supplies . . . . . . . . . . .12

Fig 5. 

Block diagram: SUPIC and SUPREG start-up
with SUPHV and auxiliary supply. . . . . . . . . . . . .14

Fig 6. 

Auxiliary winding on primary side (left) and 
secondary side (right)  . . . . . . . . . . . . . . . . . . . . .15

Fig 7. 

Position the auxiliary winding for good output 
coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Fig 8. 

Typical SUPREG voltage characteristics 
for load and temperature . . . . . . . . . . . . . . . . . . .18

Fig 9. 

Block diagram of internal SUPREG regulator  . . .19

Fig 10.  Simplified model of MOSFET drive . . . . . . . . . . .19
Fig 11.  Typical application of SUPHS  . . . . . . . . . . . . . . .21
Fig 12.  GATELS and GATEHS drivers. . . . . . . . . . . . . . .25
Fig 13.   Examples of gate circuits  . . . . . . . . . . . . . . . . . .26
Fig 14.  Simplified model of a MOSFET drive. . . . . . . . . .27
Fig 15.  SNSBOOST function . . . . . . . . . . . . . . . . . . . . . .28
Fig 16.  Inductive mode HBC switching  . . . . . . . . . . . . . .30
Fig 17.  Adaptive non-overlap switching during 

normal operating conditions. . . . . . . . . . . . . . . . .31

Fig 18.  Capacitive mode HBC switching . . . . . . . . . . . . .32
Fig 19.  Capacitive/inductive HBC operating

frequencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Fig 20.  Typical protection and regulation behavior in 

capacitive mode (during bad start-up) . . . . . . . . .33

Fig 21.  Frequency relationships. . . . . . . . . . . . . . . . . . . .34
Fig 22.  Timing overview of the oscillator and 

HBC drive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Fig 23.  Typical basic SNSFB application . . . . . . . . . . . . .37
Fig 24.  SNSFB V-I characteristics . . . . . . . . . . . . . . . . . .38
Fig 25.  SNSFB voltage to output power characteristics 

examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Fig 26.  SSHBC/EN: overview of sources, clamps and 

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Fig 27.  Operating frequencies related to SSHBC/EN 

voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

Fig 28.  OverCurrent Regulation (OCR) during 

start-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Fig 29.  Soft-start reset and two-speed soft-start  . . . . . . .43
Fig 30.  OCP and regulation HBC. . . . . . . . . . . . . . . . . . .44
Fig 31.  SNSCURHBC: resonant current 

measurement configurations . . . . . . . . . . . . . . . .46

Fig 32.  Principle of burst mode operation with 

SNSFB and comparator levels. . . . . . . . . . . . . . .47

Fig 33.  Burst mode application  . . . . . . . . . . . . . . . . . . . .48

Fig 34.  Improved efficiency by HBC burst mode in 

a 250 W converter. . . . . . . . . . . . . . . . . . . . . . . . 49

Fig 35.  Reduced losses by HBC burst mode in 

a 250 W converter. . . . . . . . . . . . . . . . . . . . . . . . 49

Fig 36.  Increased efficiency at low output power in 

burst HBC and PFC (90 W adapter) . . . . . . . . . . 50

Fig 37.  Remaining 90 W adapter losses in burst 

mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Fig 38.  Simultaneous HBC and PFC burst mode 

operation (and output voltage ripple)  . . . . . . . . . 51

Fig 39.  Designing the burst mode level using 

two resistor values  . . . . . . . . . . . . . . . . . . . . . . . 51

Fig 40.  Compensation current on SNSBURST . . . . . . . . 52
Fig 41.  Designing the burst mode level using a series 

resistor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Fig 42.  Typical SNSFB voltage-to-output power 

characteristic of a converter without burst mode 
functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Fig 43.  Example of SNSFB and frequency as functions 

of output power characteristics (normal mode) 
adapted for easy implementation of burst 
mode comparator level detection  . . . . . . . . . . . . 55

Fig 44.  Transformer construction  . . . . . . . . . . . . . . . . . . 56
Fig 45.  SNSOUT protection  . . . . . . . . . . . . . . . . . . . . . . 60
Fig 46.  Example of disabling the UVP function of 

SNSOUT/PFCON . . . . . . . . . . . . . . . . . . . . . . . . 62

Fig 47.  Example of disabling the OVP function of 

SNSOUT/PFCON . . . . . . . . . . . . . . . . . . . . . . . . 63

Fig 48.  Example of disabling both the UVP and the 

OVP functions of SNSOUT/PFCON . . . . . . . . . . 63

Fig 49.  Block diagram of the RCPROT function . . . . . . . 64
Fig 50.  RCPROT protection timer operation . . . . . . . . . . 64
Fig 51.  RCPROT operating as a restart timer . . . . . . . . . 65
Fig 52.  Ground structure and current loops in 

an application with PFC  . . . . . . . . . . . . . . . . . . . 67

Fig 53.  Ground layout example with star point 

at the boost capacitor  . . . . . . . . . . . . . . . . . . . . . 68

Fig 54.  PCB layout connecting SGND, PGND, CFMIN, 

RFMAX and SNSCURHBC. . . . . . . . . . . . . . . . . 69

Fig 55.  Start-up and debugging step-by-step  . . . . . . . . . 71
Fig 56.  Typical signals during a separate HBC 

start-up for an increase in V

boost

. . . . . . . . . . . . . 72

Fig 57.  Example of a basic IC test setup on a single 

low voltage supply (24 V)  . . . . . . . . . . . . . . . . . . 73

Fig 58.  Example of a 250 W LCD-TV application 

(part 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Fig 59.  Example of a 250 W LCD-TV application 

(part 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Fig 60.  Example of a 250 W LCD-TV application 

(part 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Summary of Contents for AN10907

Page 1: ...level shift circuit and several protection features like over current protection open loop protection capacitive mode protection and a general purpose latched protection input In addition to the norma...

Page 2: ...nt is subject to legal disclaimers NXP B V 2010 All rights reserved Application note Rev 1 28 December 2010 2 of 82 NXP Semiconductors AN10907 TEA1613T resonant power supply control IC Revision histor...

Page 3: ...thin the application note and to descriptions or figures that are similar to the ones published in the TEA1613T data sheet In most cases typical values are given to enhance the readability Section 1 I...

Page 4: ...th Modulated PWM power converters such as flyback up and down converters are widely used in low and medium power applications A disadvantage of these converters is that the PWM rectangular voltage and...

Page 5: ...otection or external temperature protection Protection timer for time out and restart Overtemperature protection Soft re start Under voltage protection for boost brownout IC supply and output voltage...

Page 6: ...1 5 k internally connected to 8 4 V results in the regulation voltage The regulation voltage range is from 4 1 V to 6 4 V and corresponds with the maximum and minimum frequency that can be controlled...

Page 7: ...connected to the boost voltage SUPIC and SUPREG are charged with a constant current by the internal start up source SUPHV operates at a voltage above 25 V Initially the charging current is low 1 1 mA...

Page 8: ...on RFMAX can vary between 0 V minimum frequency and 2 5 V maximum frequency The RFMAX voltage running frequency is driven by SNSFB and SSHBC EN function The protection timer is started when the voltag...

Page 9: ...provided in this document is subject to legal disclaimers NXP B V 2010 All rights reserved Application note Rev 1 28 December 2010 9 of 82 NXP Semiconductors AN10907 TEA1613T resonant power supply co...

Page 10: ...UP SOURCE CONTROL 10 9 V 5 5 mA SUPIC SuplcShort LatchReset 0 65 V 7 V 1 6 V 50 mV SupReg EnableSupReg reduced current startlevel Hv 22 V startlevel Lv 17 V stoplevel 15 V SupRegUvStart startlevel 10...

Page 11: ...inal VBoost no compensation nominal OCP nominal VBoost no compensation nominal OCR VSNSCURHBC t t VSNSCURHBC Vocr HBC Vocr HBC Vocp HBC Vocp HBC 0 A 0 V 1 8 V VSNSBOOST Icompensation on SNSCURHBC 2 5...

Page 12: ...and GATEHS To supply GATEHS a bootstrap function with an external diode is used to make supply SUPHS SUPIC and SUPREG also supply other internal TEA1613T circuits 6 1 2 Supply monitoring and protectio...

Page 13: ...e IC is continuously supplied by the external DC supply For this kind of application the SUPHV pin should be left open 6 2 2 SUPIC stop UVP and short circuit protection The IC stops operating when the...

Page 14: ...ation in the HV start up source when SUPIC is shorted to ground During normal conditions SUPIC quickly exceeds the protection level and the HV start up source switches to normal current 5 1 mA The HV...

Page 15: ...sformer construction 6 3 3 1 SUPIC and SNSOUT PFCON by auxiliary winding The SNSOUT PFCON input provides a combination of 3 functions Overvoltage protection SNSOUT PFCON 3 5 V latched Undervoltage pro...

Page 16: ...s at higher output currents due to the higher currents causing a larger voltage drop across the series components An auxiliary winding supply shows this variation caused by the HBC output 6 3 3 3 Volt...

Page 17: ...voltage 6 4 1 Start up When the TEA1613T is supplied by an external DC supply the SUPHV pin can be left unconnected The SUPIC start level is now 17 V When the SUPIC exceeds 17 V the internal regulato...

Page 18: ...he IC stops operating to prevent unreliable switching due to a too low gate driver voltage The HBC continues until the low side stroke is active The maximum current from the internal SUPREG series sta...

Page 19: ...hen SUPIC 22 V When start up is by an external low voltage supply SUPREG is activated when SUPIC 17 V 6 5 3 Supply voltage for the output drivers SUPREG The TEA1613T has a powerful output stage for GA...

Page 20: ...amount of gate charge and or when switching at high frequencies Instead of using SUPREG as the power source for charging SUPHS another supply source can be used In such a construction it is important...

Page 21: ...it supplied by SUPHS slowly discharges the supply voltage capacitor At the moment a new burst starts the SUPHS voltage is lower than during normal operation During the first switching cycles the SUPHS...

Page 22: ...mA ISUPREG_for_IC With respect to the IC by far the most amount of current from SUPREG is consumed by the MOSFET drivers GATELS and GATEHS Other circuit parts in the IC consume a maximum of 4 mA ISUP...

Page 23: ...mple provides an estimation and not an exact calculation ISUPIC start up 10 mA VSUPIC start up 22 V 15 V 7 V tVaux 15V 70 ms 1 6 6 1 3 Normal operation For normal operation the main purpose of the cap...

Page 24: ...or on SUPREG should be much larger than the total capacitance of the MOSFETs that need to be driven including the load and capacitor on SUPHS that is in parallel with the bootstrap construction to pre...

Page 25: ...connection to the midpoint of the external half bridge The high side driver is supplied by a capacitor on SUPHS that is supplied by an external bootstrap function by SUPREG The capacitor on SUPHS is c...

Page 26: ...acitance to be discharged the voltage on the gate just before discharge the gate threshold voltage for the MOSFET to switch off the external circuit to the gate Because the timing for switching off th...

Page 27: ...The value of the source current is highest when the supply voltage is highest and the gate voltage 0 V The value of the sink current is highest when the gate voltage is highest The supply voltage pro...

Page 28: ...is on The start level is determined by an internal hysteresis current source of 3 A in combination with the resistance values of the external divider The boost voltage for starting is higher than the...

Page 29: ...vel has an effect on the amount of compensation current in SNSBURST For information relating to combining both functions see Section 9 5 2 Advanced design of SNSBURST circuit 8 2 HBC switch control Th...

Page 30: ...ank has an inductive impedance The time required for the transition of the HB depends on the amplitude of the resonant current at the moment of switching There is a complex relationship between the am...

Page 31: ...5 of HB switching period the MOSFET is forced to switch on In this case the MOSFET is not soft switching This limitation of the maximum non overlap time ensures that at very high switching frequency t...

Page 32: ...el To bring the converter from capacitive mode to inductive operation again the oscillation frequency is increased by the capacitive mode regulation function 8 3 3 Capacitive Mode Regulation CMR The h...

Page 33: ...e inductive HBC operating frequencies 001aal443 load independent point series resonance fo Vimax Qmax Qnom Qmin Vinom Vimin Mmin Mnom 1 Mmax resistive inductive capactive fl fr fmax f M Vi a Vo Note O...

Page 34: ...um The voltage on RFMAX is 2 5 V when the oscillator frequency is maximum The value of the resistor on RFMAX determines the relationship between VRFMAX and the frequency It also determines the maximum...

Page 35: ...nd the other one on is adaptive non overlap time or dead time This non overlap time has no influence on the oscillator signal The frequency control by oscillator frequency consists of determining the...

Page 36: ...or is 4 7 There is a small deviation in value depending on other parameters and presetting conditions Practical verification of the result is advised CFMIN Ioscillator min 2 2 fHB min Voscillator 150...

Page 37: ...1 5 V 8 5 HBC feedback SNSFB A typical power supply application contains mains insulation in the HBC On the secondary mains insulated side the output voltage is compared to a reference and amplified...

Page 38: ...an 260 A which leads to an open loop protection Burst mode and open loop protection To implement a burst mode a resistor divider is connected between SNSFB and ground The impedance of this resistor di...

Page 39: ...6 1 Switching on and off using an external control function The SSHBC EN can be used to switch the converters on and off using an external control function This function is often driven by a microcont...

Page 40: ...SSHBC EN with the main difference being that HBC continues without soft start For more details on burst mode operation see Section 9 1 8 6 2 Soft start HBC The soft start function for the resonant co...

Page 41: ...s also used for regulation purposes such as over current regulation Therefore the voltage on the capacitor on SSHBC EN can vary by charging and discharging it by internal current sources For example i...

Page 42: ...is dominant to provide protection and soft start capability In addition there is an internal soft start reset mechanism that overrules both SNSFB and SSHBC EN control inputs and immediately sets the f...

Page 43: ...8 7 Overcurrent protection and regulation HBC Measurement of the primary resonant current indicates the level of output power that is being generated by the converter In case of a fault or output over...

Page 44: ...frequency is slowly increased until the resonant current value just reaches the value permitted by the preset The behavior during OCR can be observed on the SSHBC EN pin as a resultant regulation vol...

Page 45: ...during OCP can be observed on the SSHBC EN pin as a new soft start Depending on the over load or fault condition during this new soft start OCR or OCP can be activated again 8 7 3 SNSCURHBC boost volt...

Page 46: ...l cycle by cycle at higher frequencies it is susceptible to disturbances To prevent disturbances on this input the series resistor Rcc should be placed close to the IC to reduce the length of the trac...

Page 47: ...he output voltage This deliberately creates a small ripple on the output voltage during burst mode 9 1 Burst mode implementation Burst mode can be Implemented by a resistance divider from SNSFB to gro...

Page 48: ...cy in low load conditions The SNSOUT PFCON provides an on off switching signal that can be used to stop and start the PFC This signal switches between the voltage level for output voltage monitoring 2...

Page 49: ...ter is to improve the efficiency at low output power by reducing the power losses The graphs in Figure 34 and Figure 35 show the principle improvements in a 250 W resonant converter including non burs...

Page 50: ...the burst period the power is transferred directly from the input to the output The HBC determines the repetition time of the burst and the PFC follows In the burst period the PFC operates in normal r...

Page 51: ...sen experimentally 9 5 1 Basic design of an SNSBURST circuit The SNSFB voltage level at which the converter enters burst mode can be chosen by a resistor divider This voltage value can be adapted to c...

Page 52: ...t burst level for variations in the boost voltage The impedance of the resistor divider determines the amount of compensation The higher the impedance the stronger the compensation is Remarks Note tha...

Page 53: ...nd SNSBURST regarding the compensation design the calculation sheet can used The sheet provides more details and the possibility to visualize the result of value variation In the calculation sheet an...

Page 54: ...me as the example in Section 9 5 2 VSNSFB 27 28 Choose the value of RSBURST to obtain the same compensation as in example Section 9 5 2 indicator gave 72 Hz V Because the relationships are complex the...

Page 55: ...y that it cannot regulate to no load even at the highest frequency During the lowest loads the required frequency for regulation must become infinite Because the characteristic is much steeper for low...

Page 56: ...much to generate audible noise The magnetization current however is still present during low loads and is the dominant energy during burst mode Switching on and off the converter sequences continuous...

Page 57: ...ernal PFC the signal from pin SNSOUT PFCON can be used The behavior of the total system PFC and resonant in burst mode may differ from the situation when only the resonant converter operates in burst...

Page 58: ...level and hysteresis System and component tolerances play a significant role in performance variations during production The regulation feedback loop can be optimized for normal mode and any additiona...

Page 59: ...Resetting a latched protection shutdown state When a latched protection shutdown state has occurred this state is reset by one of the following actions SUPIC drops below 7 V and SUPHV is lower than 7...

Page 60: ...er construction is needed To facilitate correct working it is important that this winding has a good coupling with the secondary winding s and a minimum coupling with the primary winding In this way a...

Page 61: ...UT PFCON voltage drops below 2 35 V When detecting UVP the TEA1613T starts the protection timer by charging it with 100 A When the undervoltage state remains until the timer reaches the protection lev...

Page 62: ...e so that the OVP is still functional 10 3 3 3 UVP functionality and OVP disabled In some applications it may be required to prevent the activation of the OVP on SNSOUT PFCON To achieve this it is nec...

Page 63: ...urst mode operation When the system is in burst mode operation the undervoltage protection is not active while switching is off This is to prevent incorrect protection during this interval As soon as...

Page 64: ...n The values for both types of timer can be independently preset by an external resistor and capacitor connected to RCPROT 10 4 1 Block diagram of the RCPROT function 10 4 1 1 RCPROT working as protec...

Page 65: ...op protection SNSFB undervoltage protection SNSOUT PFCON Protection can be forcibly activated including restart by increasing the RCPROT voltage to above 4 V but not higher than 12 V using an external...

Page 66: ...required restart time trestart determines the time constant tRCPROT made by the values of R and C 29 With this time constant and the required protection time tprotection the value of R and C can be ca...

Page 67: ...ground plane if possible to avoid false signal detection by driver current disturbance see Figure 54 A star grounding construction provides the lowest risk of mutual converter disturbance or signal de...

Page 68: ...NSCURHBC connection as close as possible to pin 15 This is important for avoiding disturbance pickup Also avoid capacitive coupling between the connection to pin 15 and the HB track to pin 13 that con...

Page 69: ...with protection disabled 2 HBC with protection disabled and variable DC input voltage 3 HBC with protection enabled The best approach is to check the HBC converter first with external supplies for SUP...

Page 70: ...t VBOOST 0 V the running frequency is low with a short on time and a long off time This is due to the HB detection not working properly at low voltage and the internal slope detection HB not detecting...

Page 71: ...se voltage if needed SNSOUT PFCON 1 20 RCPROT TEA1613 SNSFB 2 19 SSHBC EN SNSBURST 3 18 RFMAX SNSBOOST 4 17 CFMIN SUPIC 5 16 SGND PGND 6 15 SNSCURHBC SUPREG 7 14 n c GATELS 8 13 HB n c 9 12 SUPHS SUPH...

Page 72: ...e is zero input voltage it indicates that the connection between these pins directly at the IC is not present Gate currents lead to false HB slope detection SNSCURHBC Any disturbances on this pin volt...

Page 73: ...nal not defective evaluate specific IC function s or pin properties with limited interference from the total system Fig 57 Example of a basic IC test setup on a single low voltage supply 24 V 019aaa26...

Page 74: ...mber 2010 74 of 82 NXP Semiconductors AN10907 TEA1613T resonant power supply control IC 12 2 Example of a 250 W LCD TV application Fig 58 Example of a 250 W LCD TV application part 1 019aaa265 L CN101...

Page 75: ...302 12N50C3 R357 100 k R132 4 7 M R135 62 k R133 4 7 M R134 51 k R355 10 R352 51 D351 1N4148 D365 BAS316 R353 100 k R310 8 2 R361 51 k R362 n m R351 10 C326 560 nF C328 10 nF C308 680 nF C306 680 nF C...

Page 76: ...v 1 28 December 2010 76 of 82 NXP Semiconductors AN10907 TEA1613T resonant power supply control IC Fig 60 Example of a 250 W LCD TV application part 3 019aaa267 D201 1N4007 D202 1N4148 ZD201 30 V C206...

Page 77: ...02 12N50C3 R357 100 k R132 4 7 M R135 62 k R133 4 7 M R134 51 k R355 10 R352 51 D351 1N4148 D365 BAS316 R353 100 k R310 8 2 R361 51 k R362 n m R351 10 C326 560 nF C328 10 nF C308 680 nF C306 680 nF C3...

Page 78: ...atibility EMI ElectroMagnetic Interference or Immunity HB Half Bridge HBC HalfBridge Converter or Controller HFP High Frequency Protection HV High Voltage IC Integrated Circuit LCD Liquid Crystal Disp...

Page 79: ...applications and products using NXP Semiconductors products and NXP Semiconductors accepts no liability for any assistance with applications or customer product design It is customer s sole responsibi...

Page 80: ...art up 42 Fig 29 Soft start reset and two speed soft start 43 Fig 30 OCP and regulation HBC 44 Fig 31 SNSCURHBC resonant current measurement configurations 46 Fig 32 Principle of burst mode operation...

Page 81: ...utput drivers SUPHS 20 6 5 4 1 Initial charging of SUPHS 20 6 5 4 2 Current load on SUPHS 20 6 5 4 3 Lower voltage on SUPHS 21 6 5 5 SUPREG power consumed by MOSFET drivers 21 6 5 6 SUPREG supply volt...

Page 82: ...normal operation 57 9 9 4 Audible noise during mode transition 58 9 10 Design guidelines for burst mode operation 58 9 11 Enable disable burst mode 58 9 12 Hold HBC and PFC 58 9 13 Unused burst mode 5...

Reviews: