background image

TABLE IV. Check Bit Overhead for Multiple Bit Error

Detection and Single Bit Error Correction

Number of Bits

Number of

Percentage

in Memory

Check Bits

of Excess

Data Word

Required

Memory

8

5

63%

16

6

38%

24

6 (7)

25% (29%)

32

7

22%

48

7 (8)

15% (17%)

64

8

13%

Note:

The number stated assumes the use of the DP8400; the number in

parentheses is required by other error correction circuits.

lists the number of additional memory chips required to sup-
port single bit error correction and double bit error detection
as a function of the memory data word width.

This table also shows the percentage of DRAM overhead
required to implement this function. Adding error correction
also increases the memory access delay, since the informa-
tion contained in the overhead chips must be analyzed in
each read and generated in each write operation.

DP8400 16-Bit Expandable Error Correction Chip

The DP8400 expandable error checker/corrector is shown
in block diagram form in

Figure 8 . This circuit offers a high

degree of flexibility in applications which range from 8-bit

to 80-bit data words. It is a 16-bit chip that is easily expand-
able with the simple addition of more DP8400s for each 16-
bit word increment.

Figures 9a, 9b and 9c demonstrate its basic operation in the

write and read memory access cycles.

Figure 9a shows the

normal write cycle, where system data is used by the
DP8400 to generate parity bits, called check bits, based on
certain combinations of the data bits. This combination is
defined by the DP8400’s matrix shown in

Figure 10 . When-

ever a ‘‘1’’ occurs in any row, the corresponding input data
bit at the top of the column helps determine the parity for
that check bit labeled at the end of the row. These check
bits are written along with the data at the same memory
address. Also, during a memory write cycle the DP8400
checks system byte parity. This is parity associated with the
data bytes transmitted between the processor and the
memory card. This is an optional feature that may prove
very valuable in multiple board memory systems.

Sometime later a read will occur at this same memory ad-
dress. The reading of memory data may be performed in
two ways, as shown in

Figures 9b and 9c . In the read cycle,

the DP8400 uses the data read from memory and internally
regenerates check bits using the same matrix. These newly
generated check bits are then compared (using X-OR
gates) with the check bits read from memory to detect er-
rors. The result of this comparison is called a syndrome
word. Any differences in the generated versus read check
bits will result in at least one syndrome bit true. This indi-
cates an error in either the read data or check bit field or
both.

TL/F/5012 – 10

FIGURE 8. DP8400 Simplified Block Diagram

7

Summary of Contents for DP8400

Page 1: ... dynamic RAM controller driver was the first controller to resolve all of these problems This Schottky bipolar device provides the flexibility of external access control along with automatic access timing genera tion without the need for an external timing generator clock In addition on board capacitive drivers allow direct drive for over 88 DRAMs With the simple addition of refresh clocks the cir...

Page 2: ...nal clock is required On chip delays insure proper address and control sequenc ing once the valid parallel address is presented to the fall through input latches of the DP8409A When the RASIN transitions high to low the decoded RAS output transitions low strobing the row address into the DRAM array An on chip delay automatically generates a guaranteed selectable mode 5 or 6 row address hold time A...

Page 3: ...ershoot undershoot at memories TL F 5012 2 FIGURE 2 Typical Application of DP8409A Using External Control and Refresh in Modes 0 and 4 TL F 5012 3 FIGURE 3 This figure demonstrates the automatic accessing capability of the DP8409A Only one strobing edge RASIN is required for generation of all DRAM access timing signals This is accomplished with on chip delay generators eliminating the need for ext...

Page 4: ...sition Thesystemisnotifiedafterthenega tive going RFCK transition that a hidden refresh has not oc curred via the refresh request output RF I O pin The sys tem acknowledges the request for a forced refresh by set ting M2 refresh low on the DP8409A and preventing fur ther access to the DP8409A The DP8409A then uses RGCK to generate an automatic forced refresh The refresh request pin then returns to...

Page 5: ... a reasonable level as demonstrated by the graphs shown in Figures 7a 7b of power versus frequency The DP84240 and the DP84244 are fabricated on a high performance oxide isolated Schottky bipolar process Spe cial circuit techiques have been used to minimize internal delays and skews Additionally both rise and fall time char acteristics track closely as a function of load capacitance This has been ...

Page 6: ...to input pulse distortion ERROR CORRECTION The determination of whether a DRAM system requires er ror correction must be resolved early in the system design A positive answer to this question may have far reaching impact on board development time and component cost It is clear however that such a decision cannot be taken lightly The type and origin of errors in DRAM systems are many and can result...

Page 7: ... read memory access cycles Figure 9a shows the normal write cycle where system data is used by the DP8400 to generate parity bits called check bits based on certain combinations of the data bits This combination is defined by the DP8400 s matrix shown in Figure 10 When ever a 1 occurs in any row the corresponding input data bit at the top of the column helps determine the parity for that check bit...

Page 8: ...P8400 TL F 5012 12 FIGURE 9b Normal Read Mode Using the Error Monitoring Method with the DP8400 TL F 5012 13 FIGURE 9c Normal Read Mode Using the Always Correct Method with the DP8400 C2 C3 generate odd parity TL F 5012 14 FIGURE 10 DP8400 Matrix 8 ...

Page 9: ...ould not be quickly found The occurrence of a double error comprising one soft and one hard must now be considered This type of error has a higher probability than two soft errors The hard error may be due to a catastrophic chip failure and a subsequent soft error will create two errors This can be a source of concern since most error correction chips cannot handle double er rors of this type Ther...

Page 10: ...n the system to warn the operator that the system is in a degrad ed operational mode and that field service should occur shortly In the meantime the system will continue to operate properly The key to the effectiveness of the DP8400 in this application is its three error flags which allow complete error reportingÐincluding a unique double error indication DP8402A 3 4 5 32 Bit Error Detector and Co...

Page 11: ... the system can implement byte writing to the DRAM array This system structure requires the insertion of few or no wait states during a memory access cycle thus maximizing throughput The DP84XX2 circuits have been designed to work with all of National s DRAM controller drivers to con trol refreshing so that system throughput is affected only when absolutely necessary First in any refresh clock per...

Page 12: ...urers CPU enjoying a favorite role Data sheets and more detailed application information are available for all the members of the DP8400 family Contact your local National Semiconductor representative or Nation al Semiconductor directly TL F 5012 18 FIGURE 14 Flexible Application of the DP8409A and DP8400 This Figure Shows an Application with a 16 Bit Microprocessor TABLE VII The DP84300 Series of...

Page 13: ...13 ...

Page 14: ...h instructions for use provided in the labeling can effectiveness be reasonably expected to result in a significant injury to the user National Semiconductor National Semiconductor National Semiconductor National Semiconductor Corporation Europe Hong Kong Ltd Japan Ltd 1111 West Bardin Road Fax a49 0 180 530 85 86 13th Floor Straight Block Tel 81 043 299 2309 Arlington TX 76017 Email cnjwge tevm2 ...

Reviews: