background image

A key advantage of the DP8400 is that it has three error
flags detailing the type of error occurrence. These are gen-
erated using the syndrome word in the manner shown in

Figure 11 . The resulting error type identifications are shown

in Table V. The three error flags allow complete error type
identification, plus the unique determination of double bit
errors, which will be key during the discussion of double bit
error correction. Also, on a memory read, the DP8400 gen-
erates byte parity bits for transmission to the processor
along with the data.

TL/F/5012 – 15

TABLE V. Error Flags after Normal Read

AE

E1

E0

Error Type

0

0

0

No Error

1

1

0

Single Check Bit Error

1

1

1

Single Data Error

1

0

0

Double-Bit Error

All Others

Invalid Conditions

There are two basic memory read methods that may be
used with the DP8400. The first is shown in

Figure 9b and is

called the error monitoring method. Here, the read data is
assumed to be correct and the processor immediately acts
on the data. If the DP8400 detects an error, the processor is
interrupted using the any error flag (AE). Using this method,
there is no detection delay in most memory reads since
errors seldom occur, but when an error does occur, the
processor must be capable of accepting an interrupt and a
read cycle extension to obtain the corrected data from the
DP8400.

A second approach is called the always correct method,

Figure 9c . In this case, the data is always assumed to be in

error and the processor always waits for the DP8400 to ana-
lyze whether an error exits. Then the corrected or un-
changed data is read from the DP8400. Although this meth-
od results in longer memory read time, every memory read
will always be of the same delay except when a double error
occurs. The selection of which method to use depends on
many factors, including the processor, system structure,
and performance.

Double Bit Error Correct

The probability of double bit errors in DRAM systems is rela-
tively low, but as memory array sizes grow, the occurrence
of these error types must be considered. Adopting certain
practices, such as rewriting a memory location whenever an
error is detected, or using ‘‘memory scrubbing’’ techniques,
can significantly reduce the probability of a double soft error
occurrence. Memory scrubbing is when the system, during
low usage, actually accesses memory solely for the purpose
of identifying and correcting single soft errors. This is an
important technique if there are segments of the memory
that are not always being accessed so that soft error occur-
rences would not be quickly found.

The occurrence of a double error comprising one soft and
one hard must now be considered. This type of error has a
higher probability than two soft errors. The hard error may
be due to a catastrophic chip failure, and a subsequent soft
error will create two errors. This can be a source of concern
since most error correction chips cannot handle double er-
rors of this type. Therefore, most systems will ‘‘crash’’ when
a catastrophic chip failure is coupled with a soft error in the
same memory address.

The DP8400 has been designed to handle just such an oc-
currence. It can correct any double bit error, as long as at
least one of the errors is a hard error. The DP8400 does this
without the need for extra hardware required for the basic
double bit detect/single bit correct system implementation.
This method is called the double complement correct tech-
nique and is demonstrated in

Figure 12 using a 4-bit data

word for simplicity. In this example, a single hard error is
located in the most significant bit of a particular memory
location and a soft error occurs at the next bit. The position
of the errors is not important since the errors may be distrib-
uted in either the data or check bit field or both. First, the
data word and corresponding check bits are written to this
memory location. When a later read of this location occurs,
step A, two errors are directly reported by the DP8400 error
flags. The system detects this, disables memory; and places
the DP8400 in the complement write mode. This causes the
previously read data and check bits to be complemented in
the DP8400 and written back to the same memory address,
step B, writing over the previous soft error. Obviously this
does not modify the cell where the hard error exits. The
system then reads from the same address again, but this
time it places the DP8400 in the complement read mode,
step C. The DP8400 again complements the memory data
and check bits and generates new check bits based on the
new data word. At this point, the chip detects a single bit
error in the bit position where the soft error occurred, and
using the conventional single error correction procedure, re-
turns corrected data to the system, step D.

In the second read, the complement read, the hard error
repeats since this bit location again receives a bit which is
complemented with respect to itself. But the soft error has
been overwritten and does not repeat. Effectively, the mem-
ory has complemented the hard bit error position twice and
the soft bit error position only once, while the DP8400 com-
plements both positions twice. Therefore, after the second
read, there is only one error left, the soft error. Since this is
now a single error it can be directly corrected.

9

Summary of Contents for DP8400

Page 1: ... dynamic RAM controller driver was the first controller to resolve all of these problems This Schottky bipolar device provides the flexibility of external access control along with automatic access timing genera tion without the need for an external timing generator clock In addition on board capacitive drivers allow direct drive for over 88 DRAMs With the simple addition of refresh clocks the cir...

Page 2: ...nal clock is required On chip delays insure proper address and control sequenc ing once the valid parallel address is presented to the fall through input latches of the DP8409A When the RASIN transitions high to low the decoded RAS output transitions low strobing the row address into the DRAM array An on chip delay automatically generates a guaranteed selectable mode 5 or 6 row address hold time A...

Page 3: ...ershoot undershoot at memories TL F 5012 2 FIGURE 2 Typical Application of DP8409A Using External Control and Refresh in Modes 0 and 4 TL F 5012 3 FIGURE 3 This figure demonstrates the automatic accessing capability of the DP8409A Only one strobing edge RASIN is required for generation of all DRAM access timing signals This is accomplished with on chip delay generators eliminating the need for ext...

Page 4: ...sition Thesystemisnotifiedafterthenega tive going RFCK transition that a hidden refresh has not oc curred via the refresh request output RF I O pin The sys tem acknowledges the request for a forced refresh by set ting M2 refresh low on the DP8409A and preventing fur ther access to the DP8409A The DP8409A then uses RGCK to generate an automatic forced refresh The refresh request pin then returns to...

Page 5: ... a reasonable level as demonstrated by the graphs shown in Figures 7a 7b of power versus frequency The DP84240 and the DP84244 are fabricated on a high performance oxide isolated Schottky bipolar process Spe cial circuit techiques have been used to minimize internal delays and skews Additionally both rise and fall time char acteristics track closely as a function of load capacitance This has been ...

Page 6: ...to input pulse distortion ERROR CORRECTION The determination of whether a DRAM system requires er ror correction must be resolved early in the system design A positive answer to this question may have far reaching impact on board development time and component cost It is clear however that such a decision cannot be taken lightly The type and origin of errors in DRAM systems are many and can result...

Page 7: ... read memory access cycles Figure 9a shows the normal write cycle where system data is used by the DP8400 to generate parity bits called check bits based on certain combinations of the data bits This combination is defined by the DP8400 s matrix shown in Figure 10 When ever a 1 occurs in any row the corresponding input data bit at the top of the column helps determine the parity for that check bit...

Page 8: ...P8400 TL F 5012 12 FIGURE 9b Normal Read Mode Using the Error Monitoring Method with the DP8400 TL F 5012 13 FIGURE 9c Normal Read Mode Using the Always Correct Method with the DP8400 C2 C3 generate odd parity TL F 5012 14 FIGURE 10 DP8400 Matrix 8 ...

Page 9: ...ould not be quickly found The occurrence of a double error comprising one soft and one hard must now be considered This type of error has a higher probability than two soft errors The hard error may be due to a catastrophic chip failure and a subsequent soft error will create two errors This can be a source of concern since most error correction chips cannot handle double er rors of this type Ther...

Page 10: ...n the system to warn the operator that the system is in a degrad ed operational mode and that field service should occur shortly In the meantime the system will continue to operate properly The key to the effectiveness of the DP8400 in this application is its three error flags which allow complete error reportingÐincluding a unique double error indication DP8402A 3 4 5 32 Bit Error Detector and Co...

Page 11: ... the system can implement byte writing to the DRAM array This system structure requires the insertion of few or no wait states during a memory access cycle thus maximizing throughput The DP84XX2 circuits have been designed to work with all of National s DRAM controller drivers to con trol refreshing so that system throughput is affected only when absolutely necessary First in any refresh clock per...

Page 12: ...urers CPU enjoying a favorite role Data sheets and more detailed application information are available for all the members of the DP8400 family Contact your local National Semiconductor representative or Nation al Semiconductor directly TL F 5012 18 FIGURE 14 Flexible Application of the DP8409A and DP8400 This Figure Shows an Application with a 16 Bit Microprocessor TABLE VII The DP84300 Series of...

Page 13: ...13 ...

Page 14: ...h instructions for use provided in the labeling can effectiveness be reasonably expected to result in a significant injury to the user National Semiconductor National Semiconductor National Semiconductor National Semiconductor Corporation Europe Hong Kong Ltd Japan Ltd 1111 West Bardin Road Fax a49 0 180 530 85 86 13th Floor Straight Block Tel 81 043 299 2309 Arlington TX 76017 Email cnjwge tevm2 ...

Reviews: