background image

4.1.2 Dual Input

must

  be  the  same  as  that  provided  from  the  Digital

Interface Board.

To look at intermodulation performance, moving shorting

jumpers of JP3 and JP4 to pins 2 and 3 of JP3. Connect

different  signals  to  J1  and  J3  from  50-Ohm  sources.

When looking at the ADC output with two different signals

at the input, the dynamic performance parameters (SNR,

SINAD, THD and SFDR) are meaningless. With two input

signals  we  are  looking  for  any  spurs  in  the  frequency

domain plot (FFT). The simple method used here to mix

two signals is not adequate to completely evaluate IMD of

these  converters.  Consequently,  the  actual  IMD

performance of the A/D converter is better than would be

indicated  by  using  this  method.  Most  high  speed  ADCs

exhibit  high  spurious  content  under  these  conditions

unless the total input swing is very low compared with full

scale.

See 

Section 6.1

 for information on capturing data with a

clock  that  is  not  synchronized  to  the  clock  of  the  Digital

Interface Board.

4.5 Digital Data Output

The digital output data from the ADC12040 is available at

the  96-pin  Euro  connector  J2.  Series  resistors  RP1  and

RP2 isolate the ADC from the load circuit to reduce noise

coupling into the ADC.

4.5 Power Supply Connections

Power to this board is supplied through power connector

P1.  The  only  supply  needed  is  +5V  at  pin  1  for  the

ADC12040, ADC12010 or the ADC12020, or +3.3V at pin

1 for the ADC12L063, plus ground at pin 2 for either. Any

circuitry you breadboard may need a negative voltage at

the -V supply pin 4.

As  mentioned  in 

Section  5.0

,  it  is  important  to  use  a

bandpass  filter  at  BNC  J1  (and  BNC  J3,  if  this  input  is

used) to ensure the quality of the signal presented to the

ADC and to get meaningful test results.

4.2 ADC reference circuitry

When  using  the  ADC12040  Evaluation  Board  with  the

Digital  Interface  Board,  a  5V  logic  power  supply  for  the

interface  board  is  needed  at  pin  3  of  P1.  This  supply

voltage  is  passed  through  J2  to  the  Digital  Interface

Board.

An adjustable reference circuit is provided on the board.

The  simple  circuit  here  is  not  temperature  stable  and  is

not  recommended  for  your  final  design  solution.  When

using the resistor values shown in 

Figure 1

, the reference

circuit  will  generate  a  nominal  reference  voltage  in  the

range of 0 to 2.4 Volts for the ADC12040, ADC12010 and

ADC12020  or  0  to  1.2  Volts  for  the  ADC12L063.  The

ADC12040,  ADC12010  and  ADC12020  are  specified  to

operate  with  VREF  in  the  range  of  1.0  to  2.4  V,  with  a

nominal value of 2.0V while the ADC12L063 is specified

to operate with VREF in the range of 0.8 to 1.2 V, with a

nominal  value  of  1.0V.  The  reference  voltage  can  be

monitored at test point TP1 and is set with VR1.

The  supply  voltages  are  protected  by  shunt  diodes  and

can  be  measured  at  TP8,  TP9  and  TP10.  If  a

breadboarded  circuit  requires  voltages  greater  than  5V,

they will have to be separately provided by the user.

4.6 Power Requirements

Voltage  and  current  requirements  for  the  ADC12040

Evaluation Board mode are:

For the ADC12040, ADC12010 and the ADC12020:

4.3 ADC clock circuit

+5.0V at 100 mA [+V]

+5.0V at 30 mA (1A when connected to the Digital

Interface Board) [+5V].

The  clock  signal  applied  to  the  ADC  is  selected  with

jumper JP2. A standard crystal oscillator can be installed

at Y1 and selected with jumper JP2 pins 2 and 3 shorted

together.  To  use  a  different  clock  source,  connect  the

signal to pin B23 of J2 and select pins 1 and 2 of jumper

JP2. The ADC clock frequency can be monitored at test

point  TP7.  R13  and  C13  are  used  for  high  frequency

termination  of  the  clock  line.  In  the  Computer  mode  of

operation using the Digital Interface Board, JP2 can have

pins 1 and  2  shorted  together  to  use  the  clock  from  the

Digital Interface Board, but this is not recommended, as

discussed in 

Section 6.1

.

For the ADC12L063:

+3.3V at 120 mA [+V]

+5.0V at 30 mA (1A when connected to the Digital

Interface Board) [+5V].

There  is  no  need  for  a  negative  supply  for  either  ADC,

unless it may be needed for the breadboard area.

5.0 Installing the ADC12040 Evaluation Board

The  evaluation  board  requires  power  supplies  as

described  in 

Section  4.6

.  An  appropriate  signal  source

should be connected to the Analog Input BNC J1. When

evaluating  dynamic  performance,  an  appropriate  signal

generator  (such  as  the  HP8644B,  HP8662A  or  the  R&S

SME-03)  with  50  Ohm  source  impedance  should  be

connected to the Analog Input BNC J1 and/or J3 through

Note  that  any  external  clock  source  must  have

TTL/CMOS  levels.  Also,  if  using  the  Digital  Interface

Board from National Semiconductor to capture data,  the

oscillator  at  Y1  should  be  removed,  the  external  clock

signal supplied at pin 3 of that socket and pins 2 and 3 of

JP2 should be selected. Additionally, the clock frequency

              

5

          

http://www.national.com

Summary of Contents for ADC12010

Page 1: ...040 12 Bit 40 Msps 5 Volt 380 mW A D Converter ADC12010 12 Bit 10 Msps 5 Volt 160 mW A D Converter ADC12020 12 Bit 20 Msps 5 Volt 185 mW A D Converter ADC12L063 12 Bit 62 Msps 3 3 Volt 354 mW A D Converter 2001 2002 2003 2004 National Semiconductor Corporation 1 http www national com ...

Page 2: ... circuit 5 4 5 Digital Data Output 6 4 5 Power Supply Connections 6 4 6 Power Requirements 6 5 0 Installing the ADC12040 Evaluation Board 6 6 0 Obtaining Best Results 6 6 1 Clock Jitter 6 6 2 Coherent Sampling 7 7 0 Evaluation Board Specifications 8 8 0 Hardware Schematic 9 9 0 Evaluation Board Bill of Materials 10 A1 0 Operating in the Computer Mode 12 A2 0 Summary Tables of Test Points and Conne...

Page 3: ...on a PC monitor as a dynamic waveform The digitized output is also available at Euro connector J2 Provision is made for adjustment of the Reference Voltage VREF with VR1 2 0 Board Assembly The ADC12040 Evaluation Board may come pre assembled or as a bare board that must be assembled Refer to the Bill of Materials for a description of components to Figure 1 for major component placement and to Figu...

Page 4: ...ics 4 To use the crystal oscillator located at Y1 to clock the ADC connect the jumper at JP2 to pins 2 and 3 This is the default position The ADC clock signal may be monitored at TP7 Because of clock isolation resistor R12 and the scope probe capacitance the clock signal at TP7 will appear integrated 5 Connect the jumper at JP3 between pins 1 and 2 and the jumper at JP4 to pins 1 and 2 to select i...

Page 5: ...e of 0 to 2 4 Volts for the ADC12040 ADC12010 and ADC12020 or 0 to 1 2 Volts for the ADC12L063 The ADC12040 ADC12010 and ADC12020 are specified to operate with VREF in the range of 1 0 to 2 4 V with a nominal value of 2 0V while the ADC12L063 is specified to operate with VREF in the range of 0 8 to 1 2 V with a nominal value of 1 0V The reference voltage can be monitored at test point TP1 and is s...

Page 6: ...rable plot of Figure 2b Note that all dynamic performance parameters shown to the right of the FFT are improved by eliminating clock jitter To develop the ADC clock WAVEVISON BRD 3 0 Digital Interface Board divides its on board clock to provide the ADC clock In doing so jitter is introduced to the ADC clock degrading the observed performance of the ADC The amount of jitter produced by this evaluat...

Page 7: ...umber of samples in the data record must be a factor of 2 integer We can eliminate the need for windowing and get more consistent results if we observe the proper ratios between the input and sampling frequencies We call this coherent sampling Coherent sampling greatly increases the spectral resolution of the FFT allowing us to more accurately evaluate the spectral response of the A D converter Wh...

Page 8: ...1 C21 A22 B22 C22 A23 B23 C23 A24 B24 C24 A25 B25 C25 A26 B26 C26 A27 B27 C27 A28 B28 C28 A29 B29 C29 A30 B30 C30 A31 B31 C31 A32 B32 C32 J2 96 PIN FEMALE EURO DIN CONNECTOR V V 5V R10 not used Q1 MMBT2222A R1 330 D6 1N5227 3 6V 1 2 3 4 5 6 7 8 24 23 22 21 20 19 18 17 ADC12010 ADC12020 ADC12040 or ADC12L063 V REF V IN V IN AGND V A V A AGND PD D8 D7 D6 DR V D DR GND D5 D4 D3 32 31 30 29 28 27 26 2...

Page 9: ...12L063 Type 1206 25 R2 R10 R19 R2 R19 no exist not used n a 26 1 R4 0 shorting strap n a 27 2 R5 R18 100 5 Type 1206 28 2 R6 R17 47 5 Type 1206 29 2 R7 R8 33 5 47Ω for ADC12010 12020 Type 1206 30 2 R9 R13 200 5 Type 1206 31 2 R11 R15 10k 5 Type 1206 32 1 R12 470 5 Type 1206 33 1 R16 not used on ADC12L063 1K 5 Type 1206 34 1 R20 100k 5 Type 1206 35 1 R21 1K 5 Type 1206 36 R22 R23 R24 R25 not popula...

Page 10: ...ly voltage TP 3 Positive input signal to the ADC Vin TP 4 Negative input signal to the ADC Vin TP 5 Signal Input test point TP 6 Power Down active high input TP 7 ADC clock frequency monitor TP 8 5V power supply for ADC12040 12010 12020 or 3 3V for ADC12L063 TP 9 5V power supply for the Digital Interface Board if used TP 10 Optional negative power supply for breadboard area TP 20 Output Enable inp...

Page 11: ...ADC output D2 B17 ADC output D3 C17 ADC output D4 B18 ADC output D5 C18 ADC output D6 B19 ADC output D7 C19 ADC output D8 B20 ADC output D9 C20 ADC output D10 B21 ADC output D11 C21 GND A1 thru A24 A28 B28 C28 A31 B31 C31 ADC Output Enable C12 not used External clock input B23 Reserved signal B22 C22 C23 Reserved power A25 A26 B25 B26 C25 C26 5V Logic Power Supply to Digital Interface Board Reserv...

Page 12: ...MICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or systems which a are intended for surgical implant into the body or b support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user 2 A critical component is any com...

Reviews: