background image

PQRY-P-T(S)LMU, Y(S)LMU (April 2017  Ver2)

WR2-85

© 2017 Mitsubishi Electric US, Inc.

8-3-2. Connection with PWFY-P36NMU-E-BU (Booster unit)

0.7

0.8

0.9

1.0

1.1

1.2

20

30

40

60

50

-7

-1

4

16

43

100

110

38

90

32

80

27

70

21

10

Heat source unit (WR2) inlet-water temp.

°C

°F

Ratio of Booster unit capacity

Booster unit

inlet-water

temp.[°F/°C]

122°F/50°C

105°F/41°C
140°F/60°C

86°F/30°C
149°F/65°C

50°F/10°C

68°F/20°C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Heat source unit (WR2) inlet-water temp.

Ratio of Booster unit input

Booster unit

inlet-water

temp.[°F/°C]

Heat source unit (WR2) inlet-water temp.

°C

°F

122°F/50°C
105°F/41°C

140°F/60°C

86°F/30°C

149°F/65°C

50°F/10°C

68°F/20°C

20

30

40

60

50

-7

-1

4

16

43

100

110

38

90

32

80

27

70

21

10

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Heat source unit (WR2) inlet-water temp.

Booster unit

inlet-water

temp.[°F/°C]

Heat source unit (WR2) inlet-water temp.

°C

°F

20

30

40

60

50

-7

-1

4

16

43

100

110

38

90

32

80

27

70

21

10

122°F/50°C

105°F/41°C

140°F/60°C

86°F/30°C
149°F/65°C

50°F/10°C

68°F/20°C

Ratio of Heat source unit inpu

t

8. CAPACITY TABLES

Summary of Contents for PQRY-P120TLMU-A

Page 1: ...9 5 REFRIGERANT CIRCUIT DIAGRAMS WR2 43 6 SOUND PRESSURE LEVELS WR2 46 7 OPERATION TEMPERATURE RANGE WR2 50 7 1 Connection with standard CITY MULTI indoor units WR2 50 7 2 Connection with PWFY P36NMU E BU Booster unit WR2 51 7 3 Connection with PWFY P36 72NMU E2 AU HEX unit WR2 51 8 CAPACITY TABLES WR2 52 8 1 Correction by Temperature in Fahrenheit WR2 52 8 2 Correction by Temperature in Celsius W...

Page 2: ...ting WR2 126 12 PIPING DESIGN WR2 139 12 1 R410A Piping Material WR2 139 12 2 Piping Design WR2 139 12 3 Refrigerant Charging Calculation WR2 143 13 INSTALLATION WR2 145 13 1 PQRY P T S LMU Y S LMU s Installation WR2 145 13 2 Installation Space WR2 145 13 3 Piping Direction WR2 146 14 INSTALLATION INFORMATION WR2 147 14 1 General Precautions WR2 147 14 2 Precautions for Indoor unit WR2 148 14 3 Pr...

Page 3: ...ermetic compressor Inverter scroll hermetic compressor Manufacturer AC R Works MITSUBISHI ELECTRIC CORPORATION Starting method Inverter Inverter Motor output kW 4 3 6 0 Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 1 902 793 1 902 G min gpm 13 ...

Page 4: ...ssor Inverter scroll hermetic compressor Manufacturer AC R Works MITSUBISHI ELECTRIC CORPORATION Starting method Inverter Inverter Motor output kW 7 7 9 5 Lubricant MEL32 Circulating water 3 Water flow rate G h 1 522 1 902 G min gpm 25 4 31 7 m3 h 5 76 7 2 L min 96 120 cfm 3 4 4 2 Pressure drop psi 3 48 6 38 kPa 24 44 Operating volume range range G h 793 1 902 1 189 3 054 G min gpm 13 2 31 7 19 8 ...

Page 5: ...r Type Inverter scroll hermetic compressor Inverter scroll hermetic compressor Manufacturer AC R Works MITSUBISHI ELECTRIC CORPORATION Starting method Inverter Inverter Motor output kW 11 0 12 4 Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 1 902 1 902 G min gpm 31 7 31 7 m3 h 7 2 7 2 L min 120 120 cfm 4 2 4 2 Pressure drop psi 6 38 6 38 kPa 44 44 Operating volume range range G h 1...

Page 6: ... G 2 64 2 64 I 10 10 Water pressure Max psi 290 290 MPa 2 2 Compressor Type Inverter scroll hermetic compressor Inverter scroll hermetic compressor Manufacturer AC R Works MITSUBISHI ELECTRIC CORPORATION Starting method Inverter Inverter Motor output kW 14 5 16 1 Case heater kW 0 045 240 V 0 045 240 V Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 3 044 3 044 G min gpm 50 7 50 7 m3 ...

Page 7: ...e G h 1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Over current protection Compressor Ove...

Page 8: ...1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Over current protection Compressor Over heat...

Page 9: ...1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Over current protection Compressor Over heat...

Page 10: ...EL32 Circulating water 3 Water flow rate G h 1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection...

Page 11: ...2 MEL32 Circulating water 3 Water flow rate G h 1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protect...

Page 12: ...ing water 3 Water flow rate G h 1 902 1 902 G min gpm 31 7 31 7 m3 h 7 20 7 20 L min 120 120 cfm 4 2 4 2 Pressure drop psi 6 38 6 38 kPa 44 44 Operating volume range G h 1 189 1 189 3 054 3 054 G min gpm 19 8 19 8 50 9 50 9 m3 h 4 5 4 5 11 6 11 6 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Over...

Page 13: ...ating water 3 Water flow rate G h 1 902 1 902 G min gpm 31 7 31 7 m3 h 7 20 7 20 L min 120 120 cfm 4 2 4 2 Pressure drop psi 6 38 6 38 kPa 44 44 Operating volume range G h 1 189 1 189 3 054 3 054 G min gpm 19 8 19 8 50 9 50 9 m3 h 4 5 4 5 11 6 11 6 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Ov...

Page 14: ...ating water 3 Water flow rate G h 1 902 1 902 G min gpm 31 7 31 7 m3 h 7 20 7 20 L min 120 120 cfm 4 2 4 2 Pressure drop psi 6 38 6 38 kPa 44 44 Operating volume range G h 1 189 1 189 3 054 3 054 G min gpm 19 8 19 8 50 9 50 9 m3 h 4 5 4 5 11 6 11 6 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Ov...

Page 15: ... Manufacturer AC R Works MITSUBISH ELECTRIC CORPORATION Starting method Inverter Inverter Motor output kW 4 3 6 0 Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 1 902 793 1 902 G min gpm 13 2 31 7 13 2 31 7 m3 h 3 0 7 2 3 0 7 2 Protection device...

Page 16: ... Starting method Inverter Inverter Motor output kW 7 7 9 5 Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 1 522 1 902 G min gpm 25 4 31 7 m3 h 5 76 7 2 L min 96 120 cfm 3 4 4 2 Pressure drop psi 3 48 6 38 kPa 24 44 Operating volume range G h 793 1 902 1 189 3 054 G min gpm 13 2 31 7 19 8 50 9 m3 h 3 0 7 2 4 5 11 6 Protection devices High pressure protection High pressure sensor High...

Page 17: ...acturer AC R Works MITSUBISH ELECTRIC CORPORATION Starting method Inverter Inverter Motor output kW 11 0 12 4 Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 1 902 1 902 G min gpm 31 7 31 7 m3 h 7 2 7 2 L min 120 120 cfm 4 2 4 2 Pressure drop psi 6 38 6 38 kPa 44 44 Operating volume range G h 1 189 3 054 1 189 3 054 G min gpm 19 8 50 9 19 8 50 9 m3 h 4 5 11 6 4 5 11 6 Protection devi...

Page 18: ...ressor Manufacturer AC R Works MITSUBISH ELECTRIC CORPORATION Starting method Inverter Inverter Motor output kW 14 5 16 1 Case heater kW 0 045 240 V 0 045 240 V Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 3 044 3 044 G min gpm 50 7 50 7 m3 h 11 52 11 52 L min 192 192 cfm 6 8 6 8 Pressure drop psi 6 53 6 53 kPa 45 45 Operating volume range G h 1 585 3 804 1 585 3 804 G min gpm 26 ...

Page 19: ...culating water 3 Water flow rate G h 1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection O...

Page 20: ...ing water 3 Water flow rate G h 1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Over current...

Page 21: ...ating water 3 Water flow rate G h 1 522 1 522 G min gpm 25 4 25 4 m3 h 5 76 5 76 L min 96 96 cfm 3 4 3 4 Pressure drop psi 3 48 3 48 kPa 24 24 Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Over curre...

Page 22: ... Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Over current protection Compressor Over heat protection Minimum Circuit Ampacity MCA A 13 9 Maximum Overcurrent Protection MOP A 20 15 Refrigerant Type ...

Page 23: ...4 24 Operating volume range G h 793 793 1 902 1 902 G min gpm 13 2 13 2 31 7 31 7 m3 h 3 0 3 0 7 2 7 2 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circuit comp Over heat protection Over current protection Compressor Over heat protection Minimum Circuit Ampacity MCA A 13 13 Maximum Overcurrent Protection MOP A 20 20 Refrigerant ...

Page 24: ...5 Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 1 902 1 902 G min gpm 31 7 31 7 m3 h 7 20 7 20 L min 120 120 cfm 4 2 4 2 Pressure drop psi 6 38 6 38 kPa 44 44 Operating volume range G h 1 189 1 189 3 054 3 054 G min gpm 19 8 19 8 50 9 50 9 m3 h 4 5 4 5 11 6 11 6 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circui...

Page 25: ...9 5 Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 1 902 1 902 G min gpm 31 7 31 7 m3 h 7 20 7 20 L min 120 120 cfm 4 2 4 2 Pressure drop psi 6 38 6 38 kPa 44 44 Operating volume range G h 1 189 1 189 3 054 3 054 G min gpm 19 8 19 8 50 9 50 9 m3 h 4 5 4 5 11 6 11 6 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circ...

Page 26: ...1 0 Lubricant MEL32 MEL32 Circulating water 3 Water flow rate G h 1 902 1 902 G min gpm 31 7 31 7 m3 h 7 20 7 20 L min 120 120 cfm 4 2 4 2 Pressure drop psi 6 38 6 38 kPa 44 44 Operating volume range G h 1 189 1 189 3 054 3 054 G min gpm 19 8 19 8 50 9 50 9 m3 h 4 5 4 5 11 6 11 6 Protection devices High pressure protection High pressure sensor High pressure switch at 4 15 MPa 601 psi Inverter circ...

Page 27: ...ted 11 2 13 0 17 6 20 4 4 78 5 24 19 7 19 0 PQRY P336TSLMU A Ducted Non Ducted 11 1 12 3 16 8 20 1 4 66 5 23 19 7 19 0 PQRY P72YLMU A Ducted Non Ducted 16 7 20 1 24 2 28 1 5 51 6 05 23 6 24 4 PQRY P96YLMU A Ducted Non Ducted 15 2 18 7 25 0 30 4 5 77 5 93 19 7 23 5 PQRY P120YLMU A Ducted Non Ducted 13 4 15 6 23 2 29 0 5 51 5 60 19 7 19 7 PQRY P144YLMU A Ducted Non Ducted 12 1 15 4 19 5 23 1 4 90 5 ...

Page 28: ...ig A 7 6 1 5 4 3 8 2 8 NO For pipes For wires For transmission cables Usage Front through hole Front through hole Front through hole Front through hole Specifications Rc3 4 Screw NPT1 1 2 Screw NPT1 1 2 Screw inlet outlet Drain pipe Water pipe 1 2 4 3 5 6 7 8 140 77 Knockout hole 5 9 16 3 1 16 ø62 7 or ø34 5 Knockout hole 2 1 2 1 3 8 ø43 7 or ø22 2 Knockout hole 1 3 4 7 8 ø45 Knockout hole 1 13 16...

Page 29: ...00 23 5 8 450 17 3 4 1450 57 1 8 600 23 5 8 450 17 3 4 163 6 7 16 350 13 13 16 700 27 9 16 880 34 11 16 111 69 21 1 8 4 3 8 2 3 4 NO For pipes For wires For transmission cables Usage Front through hole Front through hole Front through hole Front through hole Specifications Rc3 4 Screw NPT1 1 2 Screw NPT1 1 2 Screw inlet outlet Drain pipe Water pipe 1 2 4 3 5 6 7 8 140 77 Knockout hole 5 9 16 3 1 1...

Page 30: ...hrough hole Front through hole Front through hole Specifications Rc3 4 Screw NPT1 1 2 Screw NPT1 1 2 Screw inlet outlet Drain pipe Water pipe 1 2 4 3 5 6 7 8 140 77 Knockout hole 5 9 16 3 1 16 ø62 7 or ø34 5 Knockout hole 2 1 2 1 3 8 ø43 7 or ø22 2 Knockout hole 1 3 4 7 8 ø45 Knockout hole 1 13 16 ø34 Knockout hole 1 3 8 Uses when twinning kit optional parts is mounted Front through hole Note1 Sea...

Page 31: ... PQRY P96TLMU A PQRY P72TLMU A PQRY P192TSLMU A PQRY P96TLMU A PQRY P96TLMU A PQRY P216TSLMU A PQRY P120TLMU A PQRY P96TLMU A PQRY P240TSLMU A PQRY P120TLMU A PQRY P120TLMU A ø22 2 7 8 1 Note 1 Connect the pipes as shown in the figure above Refer to the table below for the pipe size 2 Twinning pipe High pressure should not be tilted more than 15 degrees from the horizontal plane 3 See the Installa...

Page 32: ...A PQRY P144TLMU A CMY Q200CBK Twinning pipe Heat source unit Unit model High pressure Low pressure c or e d P144 P168 ø22 2 7 8 BC controller Twinning pipe High pressure Low pressure a b ø28 58 1 1 8 PQRY P144TLMU A PQRY P312TSLMU A PQRY P168TLMU A PQRY P144TLMU A PQRY P336TSLMU A PQRY P168TLMU A PQRY P168TLMU A Note 1 Connect the pipes as shown in the figure above Refer to the table below for the...

Page 33: ...box The space for replacement NO For pipes For wires For transmission cables Usage Front through hole Front through hole Front through hole Front through hole Specifications Rc3 4 Screw NPT1 1 2 Screw NPT1 1 2 Screw inlet outlet Drain pipe Water pipe 1 2 4 3 5 6 7 8 140 77 Knockout hole 5 9 16 3 1 16 ø62 7 or ø34 5 Knockout hole 2 1 2 1 3 8 ø43 7 or ø22 2 Knockout hole 1 3 4 7 8 ø45 Knockout hole ...

Page 34: ...sure 2 Transformer box control box The space for replacement front side Service clearance Top view control box The space for replacement NO For pipes For wires For transmission cables Usage Front through hole Front through hole Front through hole Front through hole Specifications Rc3 4 Screw NPT1 1 2 Screw NPT1 1 2 Screw inlet outlet Drain pipe Water pipe 1 2 4 3 5 6 7 8 140 77 Knockout hole 5 9 1...

Page 35: ...8 Refrigerant service valve Low pressure 2 Transformer box control box The space for replacement front side Service clearance Top view control box The space for replacement NO For pipes For wires For transmission cables Usage Front through hole Front through hole Front through hole Front through hole Specifications Rc3 4 Screw NPT1 1 2 Screw NPT1 1 2 Screw inlet outlet Drain pipe Water pipe 1 2 4 ...

Page 36: ... PQRY P96YLMU A PQRY P72YLMU A PQRY P192YSLMU A PQRY P96YLMU A PQRY P96YLMU A PQRY P216YSLMU A PQRY P120YLMU A PQRY P96YLMU A PQRY P240YSLMU A PQRY P120YLMU A PQRY P120YLMU A ø22 2 7 8 1 Note 1 Connect the pipes as shown in the figure above Refer to the table below for the pipe size 2 Twinning pipe High pressure should not be tilted more than 15 degrees from the horizontal plane 3 See the Installa...

Page 37: ...A PQRY P144YLMU A CMY Q200CBK Twinning pipe Heat source unit Unit model High pressure Low pressure c or e d P144 P168 ø22 2 7 8 BC controller Twinning pipe High pressure Low pressure a b ø28 58 1 1 8 PQRY P144YLMU A PQRY P312YSLMU A PQRY P168YLMU A PQRY P144YLMU A PQRY P336YSLMU A PQRY P168YLMU A PQRY P168YLMU A Note 1 Connect the pipes as shown in the figure above Refer to the table below for the...

Page 38: ...A 380 15 221 8 3 4 632 24 15 16 PQRY P240YLMU A PQRY P216YLMU A 382 15 1 16 233 9 3 16 382 15 1 16 233 9 3 16 622 24 1 2 622 24 1 2 PQRY P144TLMU A 399 15 3 4 228 9 611 24 1 16 PQRY P168YLMU A 371 14 5 8 232 9 3 16 371 14 5 8 232 9 3 16 685 27 685 27 PQRY P216TLMU A 399 15 3 4 228 9 611 24 1 16 PQRY P144YLMU A PQRY P240TLMU A 382 15 1 16 233 9 3 16 622 24 1 2 PQRY P192TLMU A PQRY P168TLMU A PQRY P...

Page 39: ... circuit TP1 TP2 TB3 TB7 M1 M2 M1 M2 S 3 1 4 3 2 1 2 3 4 1 5 CN102 CNS2 yellow LED1 Power supply to Indoor Heat source transmission line CN04 red CNIT red 1 2 Operation ON signal Pump Interlock 7 7 7 7 DC0 10V signal output 6 signal 5 GND IN OUT Power input AC24V or DC24V non polar I O Board 2 1 CNPW blue CNAC4 black 1 2 CNOUT2 yellow 1 2 4 1 5 CNA0 green TB8 2 3 4 TB9 6 4 3 1 2 5 1 Motor Compress...

Page 40: ...M 1 MF1 M M M M TH4 TH5 63HS1 TH7 63LS TH8 TH6 TH3 TH2 9 9 9 LEV6 Z25 Z24 LEV7 LEV1NV TH1NV LEV1 9 P 63H1 Control Board LED3 LED2 Normal operation Lit Error Blink ON OFF 3 Compressor ON OFF output Error detection output TB7 Power selecting connector 3 LED1 Unit address setting SET UP SW6 10 Function setting LED1 Display setting Function setting ON OFF ON OFF ON OFF SWU2 SWU1 DC12V F01 AC250V 3 15A...

Page 41: ...2 4 5 CNVDC white black W 8 Difference of appliance Model name PQHY PQRY Appliance 8 do not exist 8 exist 9 Difference of appliance Model name PQHY PQRY Appliance 9 exist 9 do not exist 1 Single dotted lines indicate wiring not supplied with the unit 2 Dot dash lines indicate the control box boundaries 3 Refer to the Data book for connecting input output signal connectors 4 Daisy chain terminals T...

Page 42: ... FT P and FT N on INV Board has dropped to DC20V or less 7 Refer to the Data book for wiring terminal block for Pump Interlock Operation ON signal DC0 10V signal output and Power input 24V 8 Difference of appliance 3 4 1 R1 R5 X05 X06 3 5 1 6 CN505 1 3 CNAC 1 2 5 1 2 3 4 4 4 CN2 21S4b 21S4a Power Source 3 60Hz 460V I O Board CNAC4 black 2 1 CNOUT2 2 1 yellow 4 5 1 CNPW 2 1 blue TB8 Operation ON si...

Page 43: ...T CIRCUIT DIAGRAMS 63HS1 CJ2 CJ1 21S4a ST17 63H1 TH4 TH5 SV1a CP1 ST3 TH8 TH7 SV7b SV7a SV9 SV6a ST18 BV1 SV4d ST13 CV2a CV3a CV5a SV4a SV4b Solenoid valve block THINV 63LS ST1 Acc O S Comp INV HEX LEVINV LEV6 Water circuit Water heat exchanger plate type LEV7 BV2 PQRY P72 P96 P120TLMU YLMU ...

Page 44: ...IAGRAMS 63HS1 CJ2 CJ1 21S4a 21S4b ST17 ST13 63H1 TH4 TH5 SV1a CP1 ST3 TH8 TH7 SV7b SV7a BV1 BV2 BV9 SV4a SV4d CV6a SV4b Solenoid valve block THINV 63LS ST1 ST18 Acc O S Comp INV HEX LEVINV LEV6 Water circuit CV3a CV2a CV2b CV5a SV7c Water heat exchanger plate type LEV7 PQRY P144 P168 P192TLMU A YLMU A ...

Page 45: ...T DIAGRAMS 63HS1 CJ2 CJ1 21S4a 21S4b ST13 63H1 TH4 TH5 SV1a CP1 ST3 ST17 ST18 TH8 TH7 SV7b SV7a BV1 BV2 SV9 SV4a SV4d SV4b Solenoid valve block THINV 63LS ST1 Acc O S Comp INV HEX LEVINV Water circuit SV7c SV2a SV3a SV6a SV2b SV5a Water heat exchanger plate type LEV7 LEV6 PQRY P216 P240TLMU A YLMU A ...

Page 46: ... noise mode automatically in the case that the operation condition is severe 10 20 30 40 50 60 70 80 90 63 125 250 500 1k 2k 4k 8k NC 40 NC 30 NC 20 NC 60 NC 50 NC 70 Octave band central frequency Hz Octave band sound level dB Approximate minimum audible limit on continuous noise Stand 60Hz Low 60Hz Sound level of PQRY P96TLMU A YLMU A 63 125 250 500 1k 2k 4k 8k dB A Standard 60Hz 51 0 63 0 56 5 4...

Page 47: ...m Low noise mode automatically in the case that the operation condition is severe 10 20 30 40 50 60 70 80 90 63 125 250 500 1k 2k 4k 8k NC 40 NC 30 NC 20 NC 60 NC 50 NC 70 Octave band central frequency Hz Octave band sound level dB Approximate minimum audible limit on continuous noise Stand 60Hz Low 60Hz Sound level of PQRY P216TLMU A YLMU A 63 125 250 500 1k 2k 4k 8k dB A Standard 60Hz 47 0 61 0 ...

Page 48: ...m Low noise mode automatically in the case that the operation condition is severe 10 20 30 40 50 60 70 80 90 63 125 250 500 1k 2k 4k 8k NC 40 NC 30 NC 20 NC 60 NC 50 NC 70 Octave band central frequency Hz Octave band sound level dB Approximate minimum audible limit on continuous noise Stand 60Hz Low 60Hz Sound level of PQRY P216TSLMU A YSLMU A 63 125 250 500 1k 2k 4k 8k dB A Standard 60Hz 54 0 66 ...

Page 49: ...w noise mode automatically in the case that the operation condition is severe 10 20 30 40 50 60 70 80 90 63 125 250 500 1k 2k 4k 8k NC 40 NC 30 NC 20 NC 60 NC 50 NC 70 Octave band central frequency Hz Octave band sound level dB Approximate minimum audible limit on continuous noise Stand 60Hz Low 60Hz Sound level of PQRY P312TSLMU A YSLMU A 63 125 250 500 1k 2k 4k 8k dB A Standard 60Hz 51 0 53 0 60...

Page 50: ... circulating water temperature 90 80 70 60 50 40 FWB CWB C F Cooling PQRY P T S LMU A Y S LMU A 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 32 27 21 16 10 4 90 80 70 60 50 40 18 12 7 1 4 10 16 21 27 32 38 43 49 54 60 Indoor temperature Heat source unit WR2 circulating water temperature FDB CDB C F Heating Water temperature 10 to 45 C 50 to 113 F 15 to 27 CDB 59 to 81 FDB Indoor temperature Co...

Page 51: ...S LMU A 4 10 16 21 27 32 38 43 40 50 60 70 80 90 100 110 Heat source unit WR2 circulating water temperature HEX unit inlet water temperature 1 7 12 18 4 10 16 21 27 32 38 43 49 54 60 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 C F C F Heating 4 10 16 21 27 32 38 43 40 50 60 70 80 90 100 110 Heat source unit WR2 circulating water temperature HEX unit inlet water temperature 1 7 12 18 4 10 16 2...

Page 52: ...0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water pressure drop 10 15 30 20 35 25 Water pressure drop psi 0 4 6 5 1 3 2 Water volume gpm Water volume gpm kW 21 1 kW 20 2 BTU h 72 000 BTU h 69 000 Input Non Ducted 2 96 Ducted 3 12 PQRY Nominal ...

Page 53: ...atio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water pressure drop 10 15 30 20 35 25 Water pressure drop psi 0 4 6 5 1 3 2 Water ...

Page 54: ... 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water pressure drop 10 15 30 20 35 25 Water pressure drop psi 0 4 6 5 1 3 2 Water volume gpm Water vol...

Page 55: ...water temp Intake air temp 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 Intake air temp FWB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm ...

Page 56: ...Inlet water temp Intake air temp Inlet water temp Intake air temp 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 Intake air temp FWB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inl...

Page 57: ...city Input Capacity Input Inlet water temp Intake air temp Inlet water temp Intake air temp 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 Intake air temp FWB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0...

Page 58: ... air temp Inlet water temp Intake air temp 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 Intake air temp FWB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio k...

Page 59: ... 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio kW 70 3 kW 66 8 BTU h 240 000 BTU h 228 000 Input Non Ducted 19 49 Ducted 18 74 PQRY Nominal Cooling Capacity Rated Cooling Capacity P240TLMU YLMU P240TLMU YLMU kW 21 14 Input kW kW 79 1 kW 7...

Page 60: ... 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water pressure drop 10 15 30 20 35 25 Water pressure drop psi 0 4 6 5 1 3 2 Water volume gpm Water volume gpm kW 42 2 kW 40 2 B...

Page 61: ... 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water pressure drop 10 15 30 20 35 25 Water pressure drop psi 0 4 6 5 1 3 2 Water volume gpm Water volume gpm kW 49 2 kW 47 2 B...

Page 62: ...0 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water pressure drop 10 15 30 20 35 25 Water pressure drop psi 0 4 6 5 1 3 2 Water volume gpm Water volume gpm kW 56 3 kW 53 6 BTU...

Page 63: ... 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water pressure drop 10 15 30 20 35 25 Water pressure drop psi 0 4 6 5 1 3 2 Water volume gpm Water volume gpm kW 63 3 kW 60 4 BTU ...

Page 64: ... 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water pressure drop 10 15 30 20 35 25 Water pressure drop psi 0 4 6 5 1 3 2 Water volume gpm Water volume gpm kW 70 3 kW 66 8 BTU ...

Page 65: ... 63 65 67 69 71 73 75 Intake air temp FWB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water volume gpm Water volume gpm kW 84...

Page 66: ... 63 65 67 69 71 73 75 Intake air temp FWB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water volume gpm Water volume gpm kW 91...

Page 67: ...63 65 67 69 71 73 75 Intake air temp FWB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 77 79 Intake air temp FDB Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 50 0 60 0 70 0 80 0 90 0 100 0 110 0 Inlet water temp F Ratio Water volume gpm Water volume gpm Water volume gpm Water volume gpm kW 98 ...

Page 68: ... 0 9 1 0 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 Intake air temp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Capacity Input Water volume 0 90 0 95 1 00 1 05 1 10 2 4 3 5 7 6 8 Ratio Water volume m3 h Water volume m3 h Water pressure drop 2 3 4 5 6 8 ...

Page 69: ... temp 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 Intake air temp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Capacity Input Water vo...

Page 70: ...4 25 26 27 Intake air temp CDB Ratio kW 35 2 kW 33 4 BTU h 120 000 BTU h 114 000 Input Non Ducted 6 66 Ducted 7 35 PQRY Nominal Cooling Capacity Rated Cooling Capacity P120TLMU YLMU kW 7 24 Input kW kW 39 6 kW 37 8 BTU h 135 000 BTU h 129 000 Input Non Ducted 6 29 Ducted 5 92 PQRY Nominal Heating Capacity Rated Heating Capacity P120TLMU YLMU kW 6 83 Input kW Capacity Input Water volume 0 90 0 95 1...

Page 71: ...0 40 50 60 70 80 90 100 110 120 10 Capacity Input Water volume 0 90 0 95 1 00 1 05 1 10 4 6 8 10 12 Ratio Water volume m3 h Water volume m3 h 4 5 6 10 8 7 11 12 9 0 20 30 40 50 60 70 80 90 100 110 120 10 Water pressure drop Water pressure drop kPa PQRY PQRY Capacity Input Capacity Input Inlet water temp Intake air temp 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inl...

Page 72: ... 20 30 40 50 60 70 80 90 100 110 120 10 Water pressure drop kPa Capacity Input Water volume 0 90 0 95 1 00 1 05 1 10 4 6 8 10 12 Ratio Water volume m3 h Water volume m3 h 4 5 6 10 8 7 11 12 9 0 20 30 40 50 60 70 80 90 100 110 120 10 Water pressure drop Water pressure drop kPa Capacity Input Capacity Input Inlet water temp Intake air temp 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0...

Page 73: ... 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 Intake air temp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Capacity Input Water volume 0 90 0 95 1 00 1 05 1 ...

Page 74: ... 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 Intake air temp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Capacity Input Water volume 0 90 0 95 1 00 1 05 ...

Page 75: ...0 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 Inlet water temp C Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 Intake air temp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Capacity Input Water volume 0 90 0 95 1 00 1 05 1 10 4 8 6 10 14 1...

Page 76: ...emp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Water volume m3 h Water volume m3 h Water pressure drop 2 3 4 5 6 8 7 Water pressure drop kPa 0 10 20 30 40 kW 42 2 kW 40 2 BTU h 144 000 BTU h 137 000 Input Non Ducted 6 53 Ducted 7 72 PQRY Nominal Cooling Capacity Rated Cooling Capacity P144TSLMU YSLMU P144TSLMU YSLMU kW 7 11 Input kW kW 46 9 k...

Page 77: ...0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Water volume m3 h Water volume m3 h Water pressure drop 2 3 4 5 6 8 7 Water pressure drop kPa 0 10 20 30 40 kW 49 2 kW 47 2 BTU h 168 000 BTU h 161 000 Input Non Ducted 8 58 Ducted 9 22 PQRY Nominal Cooling Capacity Rated Cooling Capacity P168TSLMU YSLMU P168TSLMU YSLMU kW 9 33 Input kW kW 55 1 kW 52 5 BTU h 188 0...

Page 78: ... CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Water volume m3 h Water volume m3 h Water pressure drop 2 3 4 5 6 8 7 Water pressure drop kPa 0 10 20 30 40 kW 56 3 kW 53 6 BTU h 192 000 BTU h 183 000 Input Non Ducted 10 40 Ducted 10 98 PQRY Nominal Cooling Capacity Rated Cooling Capacity P192TSLMU YSLMU P192TSLMU YSLMU kW 11 30 Input kW kW 63 0 k...

Page 79: ... 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Water volume m3 h Water volume m3 h Water pressure drop 2 3 4 5 6 8 7 Water pressure drop kPa 0 10 20 30 40 kW 63 3 kW 60 4 BTU h 216 000 BTU h 206 000 Input Non Ducted 12 93 Ducted 13 24 PQRY Nominal Cooling Capacity Rated Cooling Capacity P216TSLMU YSLMU P216TSLMU YSLMU kW 14 03 Input kW kW 71 2 kW 68 0 BTU h 243 0...

Page 80: ... CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Water volume m3 h Water volume m3 h Water pressure drop 2 3 4 5 6 8 7 Water pressure drop kPa 0 10 20 30 40 kW 70 3 kW 66 8 BTU h 240 000 BTU h 228 000 Input Non Ducted 15 57 Ducted 16 15 PQRY Nominal Cooling Capacity Rated Cooling Capacity P240TSLMU YSLMU P240TSLMU YSLMU kW 16 89 Input kW kW 79 1 k...

Page 81: ... 24 Intake air temp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Water volume m3 h Water volume m3 h Water volume m3 h Water volume m3 h Water pressure drop 4 5 6 10 8 7 11 12 9 Water pressure drop kPa 0 20 30 40 50 60 70 80 90 100 110 120 10 4 5 6 10 8 7 11 12 9 0 20 30 40 50 60 70 80 90 100 110 120 10 Water pressure drop kW 84 4 kW 80 6 BTU h...

Page 82: ...18 19 20 21 22 23 24 Intake air temp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Water volume m3 h Water volume m3 h Water volume m3 h Water volume m3 h Water pressure drop 4 5 6 10 8 7 11 12 9 Water pressure drop kPa 0 20 30 40 50 60 70 80 90 100 110 120 10 4 5 6 10 8 7 11 12 9 0 20 30 40 50 60 70 80 90 100 110 120 10 Water pressure drop kW 9...

Page 83: ...24 Intake air temp CWB Ratio 0 7 0 8 0 9 1 0 1 1 1 2 15 16 17 18 19 20 21 22 23 24 25 26 27 Intake air temp CDB Ratio Water volume m3 h Water volume m3 h Water volume m3 h Water volume m3 h Water pressure drop 4 5 6 10 8 7 11 12 9 Water pressure drop kPa 0 20 30 40 50 60 70 80 90 100 110 120 10 4 5 6 10 8 7 11 12 9 0 20 30 40 50 60 70 80 90 100 110 120 10 Water pressure drop kW 98 5 kW 93 8 BTU h ...

Page 84: ...ing capacity F 20 30 40 50 60 70 80 90 100 110 7 1 4 10 16 21 27 32 38 43 C 50 F 10 C 86 F 30 C 95 F 35 C 73 F 23 C 77 F 25 C 59 F 15 C 68 F 20 C HEX unit inlet water temp F C 0 5 0 6 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 1 5 Ratio of Heat source unit input Heat source unit WR2 inlet water temp 50 F 10 C 86 F 30 C 95 F 35 C 73 F 23 C 77 F 25 C 68 F 20 C F C 20 30 40 50 60 70 80 90 100 110 7 1 4 10 16 21...

Page 85: ...1 0 1 2 1 4 Heat source unit WR2 inlet water temp Ratio of Booster unit input Booster unit inlet water temp F C Heat source unit WR2 inlet water temp C F 122 F 50 C 105 F 41 C 140 F 60 C 86 F 30 C 149 F 65 C 50 F 10 C 68 F 20 C 20 30 40 60 50 7 1 4 16 43 100 110 38 90 32 80 27 70 21 10 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 Heat source unit WR2 inlet water temp Booster unit inlet water temp F C Heat sour...

Page 86: ... heating capacity input Heat source unit water volume m3 h unit Capacity Input 0 90 0 95 1 00 1 05 1 10 2 3 4 6 5 7 8 Water volume Ratio of Heat source unit cooling capacity input Heat source unit water volume gpm unit Capacity Input 0 90 0 95 1 00 1 05 1 10 9 33 12 15 18 21 24 27 30 36 Water volume Ratio of Heat source unit heating capacity input Heat source unit water volume gpm unit Capacity In...

Page 87: ...nput Heat source unit water volume m3 h unit Capacity Input Water volume 0 90 0 95 1 00 1 05 1 10 4 6 8 10 12 Ratio of Heat source unit cooling capacity input Heat source unit water volume gpm unit Capacity Input Water volume 0 90 0 95 1 00 1 05 1 10 18 28 33 23 43 38 48 53 Ratio of Heat source unit heating capacity input Heat source unit water volume gpm unit Capacity Input Water volume 18 28 33 ...

Page 88: ...city input Capacity Input Water volume Heat source unit water volume m3 h unit 0 90 0 95 1 00 1 05 1 10 4 6 8 12 10 14 16 Ratio of Heat source unit cooling capacity input Heat source unit water volume gpm unit Capacity Input Water volume 0 90 0 95 1 00 1 05 1 10 18 28 38 48 58 68 Ratio of Heat source unit heating capacity input Heat source unit water volume gpm unit Capacity Input Water volume 18 ...

Page 89: ...y Input 0 90 0 95 1 00 1 05 1 10 2 3 4 6 5 7 8 Water volume The drawing indicates characteristic per unit Ratio of Heat source unit cooling capacity input Heat source unit water volume gpm unit Capacity Input 0 90 0 95 1 00 1 05 1 10 9 33 12 15 18 21 24 27 30 36 Water volume The drawing indicates characteristic per unit Ratio of Heat source unit heating capacity input Heat source unit water volume...

Page 90: ...pacity Input 0 90 0 95 1 00 1 05 1 10 4 6 8 10 12 Water volume The drawing indicates characteristic per unit Ratio of Heat source unit cooling capacity input Heat source unit water volume gpm unit Capacity Input 0 90 0 95 1 00 1 05 1 10 18 28 33 23 43 38 48 53 Water volume The drawing indicates characteristic per unit Ratio of Heat source unit heating capacity input Heat source unit water volume g...

Page 91: ...pacity input Intake air temp Room temp CDB Capacity Input Intake air temp 0 7 0 8 0 9 1 0 1 1 1 2 27 15 16 17 18 19 20 21 22 23 24 25 26 Ratio of Heat source unit cooling capacity input Intake air temp Room temp FWB Capacity Input Intake air temp 0 7 0 8 0 9 1 0 1 1 1 2 59 61 63 65 67 69 71 73 75 Ratio of Heat source unit heating capacity input Intake air temp Room temp FDB Capacity Input Intake a...

Page 92: ...er temp 50 F 10 C 86 F 30 C 95 F 35 C 73 F 23 C 77 F 25 C 68 F 20 C F C 20 30 40 50 60 70 80 90 100 110 7 1 4 10 16 21 27 32 38 43 HEX unit inlet water temp F C Cooling 0 5 0 6 0 7 0 8 0 9 1 0 1 2 1 1 Heat source unit WR2 inlet water temp Ratio of HEX unit heating capacity 86 F 30 C 50 F 10 C 68 F 20 C 105 F 41 C 95 F 35 C F C 20 30 40 50 60 70 80 90 100 110 7 1 4 10 16 21 27 32 38 43 HEX unit inl...

Page 93: ...1 0 1 2 1 4 Heat source unit WR2 inlet water temp Ratio of Booster unit input Booster unit inlet water temp F C Heat source unit WR2 inlet water temp C F 122 F 50 C 105 F 41 C 140 F 60 C 86 F 30 C 149 F 65 C 50 F 10 C 68 F 20 C 20 30 40 60 50 7 1 4 16 43 100 110 38 90 32 80 27 70 21 10 0 7 0 8 0 9 1 0 1 1 1 2 1 3 1 4 Heat source unit WR2 inlet water temp Booster unit inlet water temp F C Heat sour...

Page 94: ...tio of cooling capacity 1 0 95 0 9 0 85 0 20 40 60 80 100 Brine concentration wt Methanol Methanol Ratio of cooling capacity 1 0 95 0 9 0 85 0 20 40 60 80 100 Brine concentration wt Propylene Glycol Ethylene Glycol Ratio of cooling input 1 30 1 25 1 20 1 15 1 10 1 05 1 00 0 20 40 60 80 100 Brine concentration wt Ratio of cooling input 1 30 1 25 1 20 1 15 1 10 1 05 1 00 0 20 40 60 80 100 PQHY PQRY ...

Page 95: ...col Ratio of heating capacity 1 00 0 95 0 90 0 85 0 80 0 75 0 70 0 20 40 60 80 100 Brine concentration wt Ratio of heating capacity 1 00 0 95 0 90 0 85 0 80 0 75 0 70 0 20 40 60 80 100 Brine concentration wt Propylene Glycol Ethylene Glycol Ratio of heating input 1 0 95 0 9 0 85 0 8 0 20 40 60 80 100 Brine concentration wt Ratio of heating input 1 0 95 0 9 0 85 0 8 0 20 40 60 80 100 Methanol Metha...

Page 96: ... 0 5 0 4 0 3 0 2 0 1 0 5 C 0 C 5 C 10 C 0 20 40 60 80 100 Brine concentration wt Inlet water temp C F Ratio of pressure drop 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 5 C 0 C 5 C 10 C 0 20 40 60 80 100 Ethylene Glycol cooling Propylene Glycol cooling Brine concentration wt Inlet water temp C F Ratio of pressure drop 1 3 1 2 1 1 1 0 0 9 0 8 0 7 5 C 0 C 10 C 23 F 32 F 41 F 50 F 23 F 32 F 41 F 50 F 23 F 32 F 5...

Page 97: ...re drop 26 0 21 0 16 0 11 0 6 0 1 0 5 C 0 C 5 C 10 C 23 F 32 F 41 F 50 F 0 20 40 60 80 100 Brine concentration wt Please supply strainer on site Inlet water temp C F Ratio of pressure drop 2 0 1 8 1 6 1 4 1 2 1 0 5 C 0 C 10 C 23 F 32 F 50 F 0 20 40 60 80 100 Brine concentration wt Inlet water temp C F Propylene Glycol heating Ratio of pressure drop 26 0 21 0 16 0 11 0 6 0 1 0 5 C 0 C 5 C 10 C 23 F...

Page 98: ...20 30 40 50 60 70 80 90 100 10 0 C 10 20 30 40 50 Brine concentration wt 50 32 F 14 4 22 40 58 Freezing Temperature Propylene Glycol Ethylene Glycol Note The graph was referred from chemical company data But Freezing Temperature condition will be slightly different based on each company Please confirm detail data to the chemical company directly It is recommended to set the brine concentration to ...

Page 99: ...1 2 1 0 0 8 0 6 0 4 Nominal cooling capacity Rated cooling capacity BTU h kW kW BTU h kW kW P72TLMU YLMU PQRY 72 000 21 1 3 23 69 000 20 2 2 96 3 12 Non Ducted Ducted Input Input Nominal Heating capacity Rated Heating capacity BTU h kW kW BTU h kW kW P72TLMU YLMU PQRY 80 000 23 4 3 63 76 000 22 3 3 34 3 36 Non Ducted Ducted Input Input Nominal cooling capacity Rated cooling capacity BTU h kW kW BT...

Page 100: ...Ducted Ducted Input Input Nominal cooling capacity Rated cooling capacity BTU h kW kW BTU h kW kW P144TLMU YLMU PQRY 144 000 42 2 8 78 137 000 40 2 8 07 9 98 Non Ducted Ducted Input Input Nominal Heating capacity Rated Heating capacity BTU h kW kW BTU h kW kW P144TLMU YLMU PQRY 160 000 46 9 8 11 152 000 44 5 7 47 7 90 Non Ducted Ducted Input Input Nominal cooling capacity Rated cooling capacity BT...

Page 101: ...Ducted Ducted Input Input Nominal Heating capacity Rated Heating capacity BTU h kW kW BTU h kW kW P192TSLMU YSLMU PQRY 215 000 63 0 11 02 205 000 60 1 10 16 8 90 Non Ducted Ducted Input Input Nominal cooling capacity Rated cooling capacity BTU h kW kW BTU h kW kW P168TLMU YLMU PQRY 168 000 49 2 12 05 161 000 47 2 11 10 11 88 Non Ducted Ducted Input Input Nominal Heating capacity Rated Heating capa...

Page 102: ...Nominal cooling capacity Rated cooling capacity BTU h kW kW BTU h kW kW P240TSLMU YSLMU PQRY 240 000 70 3 16 89 228 000 66 8 15 57 16 15 Non Ducted Ducted Input Input Nominal Heating capacity Rated Heating capacity BTU h kW kW BTU h kW kW P240TSLMU YSLMU PQRY 270 000 79 1 14 58 258 000 75 6 13 45 12 02 Non Ducted Ducted Input Input Nominal cooling capacity Rated cooling capacity BTU h kW kW BTU h ...

Page 103: ...Nominal cooling capacity Rated cooling capacity BTU h kW kW BTU h kW kW P288TSLMU YSLMU PQRY 288 000 84 4 20 42 275 000 80 6 18 82 21 43 Non Ducted Ducted Input Input Nominal Heating capacity Rated Heating capacity BTU h kW kW BTU h kW kW P288TSLMU YSLMU PQRY 323 000 94 7 17 50 308 000 90 3 16 13 16 05 Non Ducted Ducted Input Input Nominal cooling capacity Rated cooling capacity BTU h kW kW BTU h ...

Page 104: ...LMU PQRY 336 000 98 5 26 84 320 000 93 8 24 76 25 85 Non Ducted Ducted Input Input Nominal Heating capacity Rated Heating capacity BTU h kW kW BTU h kW kW P336TSLMU YSLMU PQRY 378 000 110 8 20 77 361 000 105 8 19 16 20 05 Non Ducted Ducted Input Input 1 2 1 0 0 8 0 6 0 4 0 8 0 6 0 4 0 2 1 0 1 2 Cooling Heating 100 200 400 500 300 600 Total capacity of indoor units Ratio of capacity Ratio of power ...

Page 105: ...600 108 162 216 324 ft 1 00 0 90 0 80 0 95 0 85 0 75 0 65 0 70 Cooling capacity correction factor Total capacity of indoor unit Piping equivalent length PQRY P240T S LMU Y S LMU 0 100 200 300 400 500 600 120 180 240 360 ft 1 00 0 90 0 80 0 95 0 85 0 75 0 65 0 70 Cooling capacity correction factor Piping equivalent length Total capacity of indoor unit PQRY P72TLMU YLMU 0 100 200 300 400 500 600 36 ...

Page 106: ...ing equivalent length Total capacity of indoor unit PQRY P288TSLMU YSLMU 0 100 200 300 400 500 600 144 216 288 432 ft 1 00 0 90 0 80 0 95 0 85 0 75 0 65 0 70 Cooling capacity correction factor Piping equivalent length Total capacity of indoor unit PQRY P312TSLMU YSLMU 0 100 200 300 400 500 600 156 234 312 468 ft 1 00 0 90 0 80 0 95 0 85 0 75 0 65 0 70 Cooling capacity correction factor Piping equi...

Page 107: ...100 0 80 0 90 1 00 PQRY P72TLMU YLMU Heating capacity correction factor ft 0 600 500 400 300 200 100 0 80 0 90 1 00 Piping equivalent length PQRY P96 120TLMU YLMU Heating capacity correction factor ft 0 600 500 400 300 200 100 0 80 0 90 1 00 Piping equivalent length PQRY P216 240T S LMU Y S LMU Heating capacity correction factor ft 0 600 500 400 300 200 100 0 80 0 90 1 00 Piping equivalent length ...

Page 108: ...gth Actual piping length to the farthest indoor unit 0 47 x number of bent on the piping m PQRY P144 168 192 216 240T S LMU Y S LMU Equivalent length Actual piping length to the farthest indoor unit 1 64 x number of bent on the piping ft Equivalent length Actual piping length to the farthest indoor unit 0 50 x number of bent on the piping m PQRY P288 312TSLMU YSLMU Equivalent length Actual piping ...

Page 109: ...tside diameter ø1 2 ø5 8 15 16 1 1 8 ø3 8 ø1 4 ø3 8 ø1 2 15 16 1 1 8 ø1 2 ø5 8 ø5 8 1 15 16 15 16 ø1 ø1 ø3 4 3 1 9 16 3 Pcs Outside diameter Outside diameter Outside diameter Outside diameter Outside diameter Outside diameter 2 3 16 2 3 16 1 11 16 2 3 16 1 3 16 1 1 2 ø7 8 ø1 ø1 ø1 1 8 ø1 ø3 4 ø3 4 ø3 4 ø1 2 ø3 4 ø5 8 ø7 8 For Liquid pipe For Gas pipe Pipe diameter is indicated by inside diameter C...

Page 110: ... S LMU the following sets of headers are available Details for installing the headers are found in the System Design section or in the Water source Unit s Installation Manual For gas pipe For liquid pipe Ref W901636 in CMY Y104C G Reducer Accessory Reducer Accessory For gas pipe For liquid pipe Ref W901637 in CMY Y108C G Reducer Accessory Reducer Accessory For gas pipe For liquid pipe Ref W901638 ...

Page 111: ...ainst the horizontal plane 2 Use the attached pipe to braze the port opening of the distributer 3 Pipe diameter is indicated by inside diameter Note 1 Reference the attitude angle of the branch pipe below the fig Distributer 15 15 CMY Q200CBK Low pressure pipe twinning kit High pressure twinning pipe On site pipes Inclination tolerance of the relative to the ground High pressure twinning pipe Note...

Page 112: ...0 J1 for BC controller is used to combine 2 ports of the BC controller at a PURY PQRY system so as to enable down stream Indoor capacity above P54 as shown in Fig 1 ø15 88 5 8 ø9 52 3 8 ø19 05 3 4 ø9 52 3 8 ø15 88 5 8 ø9 52 3 8 226 8 29 32 226 8 29 32 60 2 3 8 60 2 3 8 Instruction This sheet Please prepare the following items in the field Tape for insulation material sealing Extension pipe for ref...

Page 113: ...use the box is sometimes removed at the time of service work Never connect 100V 208 230V 460V power source to terminal block of transmission If connected electrical parts will be damaged Use 2 core shield cable for transmission cable If transmission cables of different systems are wired with the same multiplecore cable the resultant poor transmitting and receiving will cause erroneous operations H...

Page 114: ...21 PMFY P15NBMU ER5 0 33 0 33 0 26 0 26 PEFY P06NMAU E3 60Hz 208 230V 188 to 253V 1 05 1 05 0 84 0 84 PEFY P08NMAU E3 1 05 1 05 0 84 0 84 PEFY P12NMAU E3 1 20 1 20 0 96 0 96 PEFY P15NMAU E3 1 45 1 45 1 16 1 16 PEFY P18NMAU E3 1 56 1 56 1 25 1 25 PEFY P24NMAU E3 2 73 2 73 2 18 2 18 PEFY P27NMAU E3 2 73 2 73 2 18 2 18 PEFY P30NMAU E3 2 73 2 73 2 18 2 18 PEFY P36NMAU E3 3 32 3 32 2 66 2 66 PEFY P48NM...

Page 115: ...50 0 50 PKFY P30NKMU E2 TH 0 63 0 63 0 50 0 50 PFFY P06NEMU E 60Hz 208 230V 188 to 253V 0 32 0 34 0 25 0 27 PFFY P08NEMU E 0 32 0 34 0 25 0 27 PFFY P12NEMU E 0 34 0 38 0 27 0 30 PFFY P15NEMU E 0 40 0 44 0 32 0 35 PFFY P18NEMU E 0 48 0 53 0 38 0 42 PFFY P24NEMU E 0 59 0 64 0 47 0 51 PFFY P06NRMU E 60Hz 208 230V 188 to 253V 0 32 0 34 0 25 0 27 PFFY P08NRMU E 0 32 0 34 0 25 0 27 PFFY P12NRMU E 0 34 0...

Page 116: ...P144TLMU A 35 32 60 50 15 PQRY P144TLMU A 35 32 60 50 15 PQRY P312TSLMU A PQRY P144TLMU A 35 32 60 50 15 PQRY P168TLMU A 44 39 70 70 15 PQRY P336TSLMU A PQRY P168TLMU A 44 39 70 70 15 PQRY P168TLMU A 44 39 70 70 15 10 2 2 Electrical Characteristics of Water source Unit Symbols MCA Min Circuit Amps 1 25xFLA FLA Full Load Amps SC Starting Current PQRY P T S HMU Model Unit Combination Water source un...

Page 117: ...V 198 to 253V 0 44 0 40 15 15 0 35 0 32 CMB P106NU G1 0 52 0 47 15 15 0 41 0 37 CMB P108NU G1 0 68 0 61 15 15 0 54 0 49 CMB P1010NU G1 0 83 0 75 15 15 0 66 0 60 CMB P1013NU G1 1 08 0 97 15 15 0 86 0 77 CMB P1016NU G1 1 30 1 18 15 15 1 04 0 94 CMB P1013NU GA1 1 08 0 97 15 15 0 86 0 77 CMB P104NU GB1 0 32 0 29 15 15 0 25 0 23 CMB P108NU GB1 0 64 0 58 15 15 0 51 0 46 CMB P108NU HA1 1 45 1 70 15 15 1 ...

Page 118: ...Type2 V2 Quantity of Type3 V2 Quantity of Others V3 Wire length km G1 Current sensitivity Wire thickness V3 30 or less 30 mA 0 1sec or less 1 5 mm2 48 100 or less 100 mA 0 1sec or less 2 5 mm2 56 4 0 mm2 66 1 Use dedicated power supplies for the heat source unit and indoor unit Ensure OC and OS are wired individually 2 Bear in mind ambient conditions ambient temperature direct sunlight rain water ...

Page 119: ...KUA should be used The transmission cable above 1 25mm2 shielded CVVS CPEVS MVVS among Heat source units and system controllers is called central control transmission cable The shield wire of the central control transmission cable must be grounded at the Heat source unit whose CN41 is changed to CN40 When the power supply unit PAC SC51KUA is used connect the shielded cable to the ground terminal o...

Page 120: ...eans shield wire 4 When the Heat source unit connected with system controller power supply to TB7 of the heat source unit s is needed The connector change from CN41 to CN40 at one of the heat source units will enable the heat source unit to supply power to TB7 or an extra power supply unit PAC SC51KUA should be used The transmission cable above 1 25mm2 shielded CVVS CPEVS MVVS among Heat source un...

Page 121: ...e counted into Max length via Heat source OC OS Heat source unit controller IC Indoor unit controller ME ME remote controller OC OS Heat source unit controller IC Indoor unit controller ME ME remote controller M2 TB7 TB3 IC 52 M1M2 1 2 S TB5 TB15 1 2 TB15 1 2 TB15 1 2 TB15 1 2 TB15 1 2 TB 15 1 2 TB15 MA 01 IC M1M2S TB5 02 IC M1M2S TB5 04 IC M1M2S TB5 03 IC M1M2S TB5 05 IC M1M2S TB5 07 IC M1M2S TB5...

Page 122: ...VC insulated PVC jacketed shielded control cable CPEVS PE insulated PVC jacketed shielded communication cable 1 To wire PAC YT53CRAU use a wire with a diameter of 0 3 mm2 AWG22 2 The use of cables 0 75 mm2 AWG18 or greater is recommended for easy handling CVV PV insulated PVC sheathed control cable Max length 200m 656ft Li MA Remote controller cables When 10m 32ft is exceeded use cables with the s...

Page 123: ...onditioner system to ensure proper system communication according to 11 3 2 A B C 11 3 2 A Firstly count from TB3 at TB3 side the total quantity of Indoor units ME remote controller and System controllers counted as 2 indoor units but MA remote controller s and PZ 41SLB are NOT counted 11 3 2 B Secondly count from TB7 side to TB3 side the total transmission power consumption index If the total pow...

Page 124: ...N41 on the Heat source units should be kept as it is It is also a factory setting 1 PAC SC51KUA supports maximum 1 AG 150A A or 1 EB 50GU A unit due to the limited power 24VDC at its TB3 However 1 PAC SC51KUA supplies transmission power at its TB2 equal to 5 Indoor units which is referable at Table 2 3 2 If PZ 52SF System controller ON OFF controller connected to TB7 consume transmission power mor...

Page 125: ...unit PAC SC51KUA is not necessary The expansion controller supplies power through TB3 which equals 6 indoor units refer to Table 2 3 2 11 3 5 Power supply to expansion controller 1 phase 100 240VAC power supply is needed The power supply unit PAC SC51KUA is not necessary when only BM ADAPTER is connected Yet make sure to move the power jumper from CN41 to CN40 on the BM ADAPTER 11 3 6 Power supply...

Page 126: ...n connecting only one remote controller to one group it is always the main remote controller When connecting two remote controllers to one group set one remote controller as the main remote controller and the other as the sub remote controller 11 4 1 Switch operation 012 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 The factory setting is Main Setting the dip switches There are...

Page 127: ...ircuit system OC and OS are automatically detected Note 2 Please reset one of them to an address between 51 and 99 when two addresses overlap The address automatically becomes 100 if it is set as 01 50 Use the most recent address within the same group of indoor units Make the indoor units address connected to the BC controller Sub larger than the indoor units address connected to the BC controller...

Page 128: ...or a system having more than 1 heat source unit because the central transmission power supply from TB7 of one of heat source units is risking that the heat source unit failure may let down the whole central control system Activates the power supply to M NET transmission line from AE 200A AE 50A EW 50A CN21 ON power supplied OFF power not supplied 11 4 3 1 MA remote controller Single refrigerant sy...

Page 129: ...e same capacity they are ranked in ascending order of their address Indoor unit MA R C MA R C Main Sub MA R C 1 For Wireless R C and Signal receiver unit SRU channel 1 2 and 3 are selectable and should be set to same channel SC can be connected to TB3 side or TB7 side Should SC connected to TB7 side change Jumper from CN41 to CN40 at the Heat source unit module so as to supply power to the SC 201 ...

Page 130: ...for long M NET wiring Details refer to 11 3 System configuration restrictions NOTE 1 Heat source units OC and OS in one refrigerant circuit system are automatically detected OC and OS are ranked in descending order of capacity If units are the same capacity they are ranked in ascending order of their address 2 System controller should connect to TB7 at the Heat source unit and use power supply uni...

Page 131: ...r units should be set with a branch number 11 4 3 5 ME remote controller Single refrigerant system System controller LOSSNAY 2 Address should be set to Indoor units LOSSNAY central controller ME remote controllers 3 For a system having more than 32 indoor unit P06 P54 confirm the need of Booster at 11 3 System configuration restrictions NOTE ME R C ME R C Indoor unit ME R C 104 105 155 01 04 05 TB...

Page 132: ...h the PAC SC51KUA For AE 200A AE 50A and EW 50A the power supply unit PAC SC51KUA is unused 01 02 03 30 TB5 BC controller Main 53 TB02 BC controller Sub 80 TB02 BC controller TB02 TB5 TB5 TB2 Transmission Booster PAC SF46EPA TB5 TB3 ME R C ME R C Indoor unit ME R C 144 145 195 130 41 93 44 45 TB5 TB5 TB5 ME R C 141 ME R C 101 ME R C 102 Group 2 Group 1 Group 21 Group 31 Group 34 Group 35 TB3 TB7 T...

Page 133: ...ontroller installation manual Group 1 Group 3 Group 4 Group 2 ME R C 01 02 03 04 05 101 105 09 10 08 07 06 110 107 ME R C ME R C ME R C BC controller 53 TB02 BC controller 57 TB02 TB7 TB3 56 CN41 CN40 OFF DipSW5 1 TB3 TB7 TB7 TB3 52 51 CN41 CN40 CN41 CN40 OFF DipSW5 1 OFF DipSW5 1 OC OC OS SC 201 11 4 3 9 ME remote controller Multi refrigerant system System Controller at TB7 side No Power supply u...

Page 134: ...E R C ME R C ME R C 01 02 03 30 TB5 TB5 TB5 TB2 Transmission Booster PAC SF46EPA TB5 ME R C 101 102 130 180 TB3 Group 2 Group 1 Group 21 TB7 TB7 TB7 TB3 TB3 52 51 OC OS TB3 91 OC CN41 CN40 CN41 CN40 CN41 CN40 ON DipSW5 1 ON DipSW5 1 ON DipSW5 1 ME R C ME R C Indoor unit ME R C ME R C 142 144 145 195 41 42 43 44 45 TB5 TB5 TB5 TB5 TB5 Group 32 Group 33 Group 31 Group 34 Group 35 ME R C 141 PQRY PQR...

Page 135: ...E R C ME R C ME R C 01 02 03 30 TB5 TB5 TB5 TB2 Transmission Booster PAC SF46EPA TB5 ME R C 101 102 130 180 TB3 Group 2 Group 1 Group 21 TB7 TB7 TB7 TB3 TB3 52 51 OC OS TB3 91 OC CN41 CN40 CN41 CN40 CN41 CN40 ON DipSW5 1 ON DipSW5 1 ON DipSW5 1 ME R C ME R C Indoor unit ME R C ME R C 142 144 145 195 41 42 43 44 45 TB5 TB5 TB5 TB5 TB5 Group 32 Group 33 Group 31 Group 34 Group 35 ME R C 141 PQRY PQR...

Page 136: ...0 CN41 CN40 CN41 CN40 CN41 CN40 ON DipSW5 1 ON DipSW5 1 ON DipSW5 1 ON DipSW5 1 ON DipSW5 1 Indoor unit ME R C ME R C ME R C 01 02 03 30 TB5 TB5 TB5 TB2 Transmission Booster PAC SF46EPA TB5 ME R C 101 102 130 180 TB3 Group 2 Group 1 Group 21 TB3 TB7 TB7 TB7 TB7 TB7 TB3 52 51 OC OS TB3 TB3 92 91 OC OS TB3 96 OC CN41 CN40 CN41 CN40 CN41 CN40 CN41 CN40 CN41 CN40 ON DipSW5 1 ON DipSW5 1 ON DipSW5 1 ON...

Page 137: ...mission Booster PAC SF46EPA TB5 TB15 TB15 TB3 TB15 Group 2 Group 1 Group 40 TB7 TB7 TB7 TB3 TB3 52 51 OC OS TB3 51 OC CN41 CN40 CN41 CN40 CN41 CN40 OFF DipSW5 1 OFF DipSW5 1 OFF DipSW5 1 Indoor unit ME R C ME R C 01 02 03 30 TB5 BC controller Main 53 TB02 BC controller Sub 80 BC controller Sub 94 TB02 TB02 BC controller Main 93 TB02 TB5 TB5 TB2 Transmission Booster PAC SF46EPA TB5 ME R C 101 102 1...

Page 138: ... TB7 TB3 TB3 52 51 OC OS TB3 51 OC CN41 CN40 CN41 CN40 CN41 CN40 ON DipSW5 1 ON DipSW5 1 ON DipSW5 1 Indoor unit ME R C ME R C 01 02 03 30 TB5 BC controller Main 53 TB02 BC controller Sub 80 BC controller Sub 94 TB02 TB02 BC controller Main 93 TB02 TB5 TB5 TB2 Transmission Booster PAC SF46EPA TB5 ME R C 101 102 130 TB3 Group 2 Group 1 Group 21 TB3 TB7 TB7 TB7 TB7 TB7 TB3 52 51 OC OS TB3 TB3 92 91 ...

Page 139: ... 2 Farthest Indoor from BC controller D E h can exceed 40 m 131 ft till 60 m 197 ft if no Indoor sized P72 P96 connected Details refer to Fig 12 2 1 2 3 Distance of Indoor sized P72 P96 from BC must be less than 10 m 32 ft if any HU Fig 12 2 1 1 Piping scheme Note1 PQRY systems do not require headers Note2 Indoor units sized P72 P96 should be connected to a BC controller using the Y shaped CMY R16...

Page 140: ...ssure loss on transportation of refrigerant the fewer bends in the system the better it is Piping length needs to factor in the actual length and equivalent length in which the bends are counted Note4 Indoor units connected to the BC controller sharing one port cannot operate separately in heating and cooling modes simultaneously i e they must function in either heating or cooling in tandem Note5 ...

Page 141: ... Heat source Unit IU Indoor Unit BC BC controller 1 Please refer to Fig 12 2 4 2 Farthest Indoor from BC controller D E h or F G j or F H k can exceed 40 m 131 ft till 60 m 197 ft if no Indoor sized P72 P96 connected Details refer to Fig 12 2 3 2 3 Distance of Indoor sized P72 P96 from BC must be less than 10 m 32 ft if any 4 When using 2 Sub BC controllers max height h3 should be considered IU In...

Page 142: ...P144 168 192 216 240TLMU A YLMU A 200 300 400 500 600 700 800 900 1000 10 20 30 40 50 60 70 80 90 100 110 Distance between heat source unit and BC controller m Total extended pipe length m 200 300 400 500 600 700 800 900 1000 10 20 30 40 50 60 70 80 90 100 110 Distance between heat source unit and BC controller m Total extended pipe length m 500 1000 1500 2000 30 90 150 210 270 330 Distance betwee...

Page 143: ...U Main unit HU Sub unit G 3 P06 4 P08 5 P54 6 P72 BC controller Main HA Type 2 0 kg 71oz BC controller Standard Main 3 0 kg 106oz BC controller Sub Total Units 1 2 Charged amount 1 0 kg 36oz 2 0 kg 71oz Additional charge Heat source unit model Charged amount Total Capacity of Connected Indoor Units Models 28 54 Models 55 126 Models 127 144 Models 145 180 Models 181 234 Models 235 273 Models 274 30...

Page 144: ... YLMU T YLMU T YLMU T YLMU T YLMU T YLMU T YLMU T YLMU T YSLMU Maximum refrigerant charge Factory charged 11 lbs 1 oz 11 lbs 1 oz 11 lbs 1 oz 13 lbs 4 oz 13 lbs 4 oz 13 lbs 4 oz 25 lbs 13 oz 25 lbs 13 oz 22 lbs 1 oz Charged on site 61 lbs 12 oz 70 lbs 9 oz 72 lbs 13 oz 97 lbs 1 oz 99 lbs 4 oz 114 lbs 11 oz 125 lbs 11 oz 127 lbs 14 oz 99 lbs 4 oz Total for system 72 lbs 13 oz 81 lbs 10 oz 83 lbs 13...

Page 145: ... cared at heating mode 6 Enough space for installation and service as shown at 13 2 7 Avoid the sites where acidic solutions or chemical sprays sulfur series are used frequently 8 The unit should be secure from combustible gas oil steam chemical gas like acidic solution sulfur gas and so on Unit mm in control box The space for replacement front side Service space front side Service space Top view ...

Page 146: ...ep the level of dissolved oxygen in the water no higher than 1mg Water quality standard Please consult with a water quality control specialist about water quality control methods and water quality calculations before using anti corrosive solutions for water quality management When replacing a previously installed air conditioning device even when only the heat exchanger is being replaced first con...

Page 147: ...s warm air in order to warm up the whole room The sound levels were obtained in an anechoic room The sound levels during actual operation are usually higher than the simulated values due to ambient noise and echoes Refer to the section on SOUND LEVELS for the measurement location Depending on the operation conditions the unit generates noise caused by valve actuation refrigerant flow and pressure ...

Page 148: ...the remote controller may differ from the actual room temperature due to the effect of the wall temperature Use a built in thermostat on the remote controller or a separately sold thermostat when indoor units installed on or in the ceiling operate the automatic cooling heating switchover The room temperature may rise drastically due to Thermo OFF in the places where the air conditioning load is la...

Page 149: ...uard remove the snow from the guard Install a roof that is strong enough to withstand snow loads in a place where snow accumulates Provide proper protection around the outdoor units in places such as schools to avoid the risk of injury A cooling tower and heat source water circuit should be a closed circuit that water is not exposed to the atmosphere When a tank is installed to ensure that the cir...

Page 150: ...AC YG66DCA or PAC YG63MCA do not use it for the control for the fire prevention or security This function should never be used in the way that would put people s lives at risk Provide any methods or circuit that allow ON OFF operation using an external switch in case of failure 14 2 3 Installation environment The surge protection for the transmission line may be required in areas where lightning s...

Page 151: ... 0 3m height from the floor Fresh air supply fan Indoor space Floor Fig 15 4 Fresh air supply and refrigerant shut off upon sensor action Note 1 Countermeasure 3 should be done in a proper way in which the fresh air supply shall be on whenever the leakage happens Note 2 In principle MITSUBISHI ELECTRIC requires proper piping design installation and air tight testing after installation to avoid lea...

Page 152: ...WR2 152 PQRY P T S LMU Y S LMU April 2017 Ver2 2017 Mitsubishi Electric US Inc ...

Reviews: