background image

S1

F1

L

N

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

20/017.000.2

200 - 500V~
200 - 300V~

R: 0

-10M

IN

OUT

U– = 0,45×U~

+

S

DC

ROBA  -switch

I

 = 1,8A

max

    0,05-2sec

t:

R

R

S1

F1

L

N

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

20/017.000.2

200 - 500V~
200 - 300V~

R: 0

-10M

IN

OUT

U– = 0,45×U~

+

S

DC

ROBA  -switch

I

 = 1,8A

max

    0,05-2sec

t:

R

R

0

0 % 

20 % 

40 % 

60 % 

80 % 

100 %  120 %  140 %  160 % 

140 %

120 %

100 %

80 %

60 %

40 %

20 %

0 %

34 %

50 %

125 %

160 %

Electrical Connection

Holding brake

equals 

15 %

  

spring force 

for Sizes 2 – 500

Coil

F1: external fuse

Coil

F1: external fuse

** RMS coil capacity P

RMS

 

P

RMS 

 

P

nom 

The coil capacity P

RMS

 must not be larger than P

nom

Otherwise, the coil may fail due to thermic overload.

Calculations:

P

RMS

 

[W] 

 RMS  coil  capacity,  dependent  on  switching  
frequency,  overexcitation,  power  reduction  and 
switch-on time duration

 P

RMS 

=    

P

over

 x t

over

 + P

hold 

x  t

hold

t

tot

P

nom

  

[W]  

Coil

 

nominal

 

capacity

 

(Catalogue

 

values

 

or

 

Type tag) 

P

over

  

[W]  

Coil capacity on overexcitation

P

over

 = 

(

U

over

  x P

nom

U

nom

P

hold 

[W]  

Coil capacity on power reduction

P

hold

 = 

(

U

hold

  x P

nom

U

nom

t

over

  

[s]  

Overexcitation time

t

hold

  

[s]  

Time of operation with power reduction

t

off

  

[s]  

Time without voltage

t

tot

  

[s]  

Total time (t

over

 + t

hold

 + t

off

)

U

over 

[V]  

Overexcitation voltage (bridge voltage)

U

hold

  

[V] 

Holding voltage (half-wave voltage)

U

nom

  

[V]  

Coil nominal voltage

Time Diagram:

U

over

U

nom

U

hold

 

 

t

tot

 

 

t

on   

 

t

off 

  t

over   

t

hold

Overexcitation time t

over

Increased  wear  and  therefore  an  enlarged  air  gap  as  well  as  coil 
heat  lengthen  the  separation  time  t

2

  of  the  brake.  Therefore,  as  

overexcitation time t

over

, please select at least double the separation 

time t

2

 with nominal power on each brake size.

The spring forces also influence the brake separation time t

2

: Higher 

spring forces increase the separation time t

2

 and lower spring forces 

reduce the separation time t

2

. The separation time t

2

 alterations due 

to the spring configuration can be seen in the adjoining diagram. 

Spring force (braking torque adjustment) < 100 %: 

The overexcitation time t

over

 is less than double the separation time 

t

2

 on each brake size.

Example: braking torque adjustment = 34 % 
 

--> separation time t

= 50 % 

 

 --> overexcitation time t

over 

= 200 % x 50 % = 100 % t

2

Spring force (braking torque adjustment) = 100 %:

The overexcitation time t

over

 is double the separation time t

2

 on each 

brake size. 

Spring force (braking torque adjustment) > 100 %:

The  overexcitation  time  t

over

  is  higher  than  double  the  separation 

time t

2

 on each brake size.

Example: braking torque adjustment = 125 %
 

-->

 

separation time t

=

 

120

 

 

 --> overexcitation time t

over 

= 200 % x 120 % = 240 % t

2

Magnetic Field Removal

AC-side switching

The  power  circuit  is  interrupted 
before the rectifier. The magnetic 
field  slowly  reduces.  This  delays 
the rise in braking torque.

When  switching  times  are  not  
important, please switch AC-side, 
as  no  protective  measures  are  
necessary  for  coil  and  switching 
contacts.

AC-side switching means 

low-noise switching

; however, the brake 

engagement time is longer (c. 6 – 10 times longer than with DC-side 
switch-off). Use for non-critical braking times.

DC-side switching

The  power  circuit  is  interrupted 
between the rectifier and the coil as 
well as mains-side. The magnetic 
field  is  removed  very  quickly,  
resulting in a rapid rise in braking 
torque. 

When  switching  DC-side,  high 
voltage  peaks  are  produced  in 
the  coil,  which  lead  to  wear  on  
the  contacts  from  sparks  and  to 
destruction of the insulation.

DC-side switching means 

short brake engagement times (e.g. for 

EMERGENCY  STOP  operation)

.  However,  this  produces  louder 

switching noises. 

Protective Circuit

When  using  DC-side  switching,  the  coil  must  be  protected  by  
a  suitable  protective  circuit  according  to  VDE  0580,  which  is  
integrated in 

mayr

®

 rectifiers. To protect the switching contact from 

consumption when using DC-side switching, additional protective 
measures  may  be  necessary  (e.g.  series  connection  of  switching 
contacts).  The  switching  contacts  used  should  have  a  minimum 
contact opening of 3 mm and should be suitable for inductive load 
switching.  Please  make  sure  on  selection  that  the  rated  voltage  
and  the  rated  operation  current  are  sufficient.  Depending  on  the  
application, the switching contact can also be protected by other 
protective circuits (e.g. 

mayr

®

 spark quenching units), although this 

may of course then alter the switching times.

Holding brake

equals 

160 % 

spring force 

for Size 1000

Diagram:

 

Brake separation time t

2

 dependent on spring configuration

Spring force (braking torque adjustment in %)

Separation time t

 

(in %)

1

1

Summary of Contents for ROBA-stop-M

Page 1: ...OBA stop M Electromagnetic safety brakes Fast and cost effective installation High Protection IP54 IP65 Maintenance free for the rotor lifetime your reliable partner ROBA stop Always the safest choice...

Page 2: ...d condition helical springs 6 press against the armature disk 5 The rotor 3 is held between the armature disk 5 and the corresponding mounting surface of the machine The shaft is braked via the gear h...

Page 3: ...s in this document are represented with a comma e g 0 5 instead of 0 5 We reserve the right to make dimensional and constructional alterations 1 Hand release not installed on sizes 2 500 Size 1000 han...

Page 4: ...250 500 1 2 1000 5 Holding brake 1 2 Type 891 1_ _ _ Mnom Nm 4 8 16 32 64 100 180 250 450 800 3 1600 5 Input power Pnom W 19 25 29 38 46 69 88 98 120 152 186 Maximum speed nmax rpm 6000 5000 4000 350...

Page 5: ...IN IEC 60038 10 Outer diameter friction disk free size outer diameter flange plate 0 2 Missing dimensions are identical with Type 891 011 0 see page 4 Dimensions mm Size 2 4 8 16 32 60 100 150 250 500...

Page 6: ...nal condition by replacing the rotor For this the brake must be cleaned thoroughly The wear condition of the rotor 3 is determined by measuring the release voltage this must not exceed max 90 of the n...

Page 7: ...mm 6 05 6 05 6 9 8 10 4 11 15 14 15 5 17 18 5 18 5 Table 1 Permitted Bores dmax Size 2 4 8 16 32 60 100 150 250 500 1000 dmax Type 891 0_ _ _ 2 Keyway JS9 6885 1 13 13 18 22 30 32 42 45 55 75 90 6885...

Page 8: ...tching frequency can be taken from the friction power diagrams page 9 If the friction work switching work per braking is known the max switching frequency can also be taken from the friction power dia...

Page 9: ...250 Size 150 Size 100 Size 60 Size 32 Size 16 Size 8 Size 4 Size 2 Switching frequency 1 h Diagram 2 Type 891 10_ _ Holding brake Type 891 10_ _ Holding brake for 50 of the maximum speed nmax for the...

Page 10: ...1 page 5 as part of the standard delivery A radial shaft sealing ring Item 1 is installed in the coil carrier Item 2 on continuous shafts Damping rotor gear hub If vibrations in the drive line cannot...

Page 11: ...observe the applicable directives and standards e g DIN EN 60204 1 and DIN VDE 0580 Their observance must be guaranteed and double checked Earthing Connection The brake is designed for Protection Cla...

Page 12: ...g force braking torque adjustment 100 The overexcitation time tover is double the separation time t2 on each brake size Spring force braking torque adjustment 100 The overexcitation time tover is high...

Page 13: ...controlled output voltage with variable input voltage compact design compact design no wear on contacts no wear on contacts U over 207 VDC Overexcitation voltage U over 360 VDC Overexcitation voltage...

Page 14: ...7 W 517 W 312 W 416 W 416 W 416 W Max coil capacity at 230 VAC up to 85 C 352 W 352 W 187 W 250 W 250 W 250 W Max coil capacity at 400 VAC 50 C 540 W 720 W 720 W 720 W Max coil capacity at 400 VAC up...

Page 15: ...n Terminals 1 2 Input voltage fitted protective varistor 3 4 Connection for external contact for DC side switch off 5 6 Output voltage fitted protective varistor 7 8 Rext for bridge rectifier timing a...

Page 16: ...tive measures or external components are necessary The DC side disconnection is stand ard activated terminals 3 and 4 are not wired resulting in short electromagnetic consumer switching times The inte...

Page 17: ...bridge voltage for 50 ms and then control the 90 or 180 VDC overexcitation voltages After the overexcitation period they control the 52 or 104 VDC holding voltages The overexcitation period can be adj...

Page 18: ...load Switching products with a contact opening distance of 3 mm are suitable for this purpose Electrical Connection Terminals 1 Input voltage 2 Input voltage 3 Coil 4 Coil 5 Free nc terminal 6 Free nc...

Page 19: ...must be adjusted according to the size of the brake at the place of installation The brakes are designed for a relative duty cycle of 100 The brakes are only designed for dry running The braking torqu...

Page 20: ...7 contact mayr fr Italy Mayr Italia S r l Viale Veneto 3 35020 Saonara PD Tel 0 49 8 79 10 20 Fax 0 49 8 79 10 22 info mayr italia it Singapore Mayr Transmission S PTE Ltd No 8 Boon Lay Way Unit 03 06...

Reviews:

Related manuals for ROBA-stop-M