background image

LT8607/LT8607B

12

Rev. C

For more information 

www.analog.com

APPLICATIONS INFORMATION

Inductor Selection and Maximum Output Current

The  LT8607 is designed to minimize solution size by 

allowing the inductor to be chosen based on the output 

load requirements of the application. During overload or 

short circuit conditions the LT8607 safely tolerates opera-

tion with a saturated inductor through the use of a high 

speed peak-current mode architecture.
A good first choice for the inductor value is:

 

 

L

=

V

OUT

+

V

SW(BOT)

f

SW

• 2

where f

SW

 is the switching frequency in MHz, V

OUT

 is 

the output voltage, V

SW(BOT)

 is the bottom switch drop 

(~0.125V) and L is the inductor value in µH. 
To avoid overheating and poor efficiency, an inductor 

must be chosen with an RMS current rating that is greater 

than the maximum expected output load of the applica-

tion. In addition, the saturation current (typically labeled 

I

SAT

) rating of the inductor must be higher than the load 

current plus 1/2 of in inductor ripple current: 

 

I

L(PEAK)

=

I

LOAD(MAX)

+

1

2

Δ

L

where ∆I

L

 is the inductor ripple current as calculated sev-

eral paragraphs below and I

LOAD(MAX)

 is the maximum 

output load for a given application. 
As a quick example, an application requiring 0.25A output 

should use an inductor with an RMS rating of greater 

than 0.5A and an I

SAT

 of greater than 0.7A. To keep the 

efficiency high, the series resistance (DCR) should be less 

than 0.04Ω, and the core material should be intended for 

high frequency applications. 
The LT8607 limits the peak switch current in order to 

protect the switches and the system from overload faults. 

The top switch current limit (I

LIM

) is at least 1.2A at low 

duty cycles and decreases linearly to at least 0.9A at D = 

0.8. The inductor value must then be sufficient to supply 

the desired maximum output current (I

OUT(MAX)

), which 

is a function of the switch current limit (I

LIM

) and the 

ripple current:

 

I

OUT(MAX)

=

I

LIM

Δ

I

L

2

The peak-to-peak ripple current in the inductor can be 

calculated as follows:

 

Δ

I

L

=

V

OUT

L • f

SW

1–

V

OUT

V

IN(MAX)



where f

SW

 is the switching frequency of the LT8607, and 

L is the value of the inductor. Therefore, the maximum 

output current that the LT8607 will deliver depends on 

the switch current limit, the inductor value, and the input 

and output voltages. The inductor value may have to be 

increased if the inductor ripple current does not allow 

sufficient maximum output current (I

OUT(MAX)

) given the 

switching frequency, and maximum input voltage used in 

the desired application.
The optimum inductor for a given application may differ 

from the one indicated by this design guide. A larger value 

inductor provides a higher maximum load current and 

reduces the output voltage ripple. For applications requir-

ing smaller load currents, the value of the inductor may 

be lower and the LT8607 may operate with higher ripple 

current. This allows use of a physically smaller inductor, 

or one with a lower DCR resulting in higher efficiency. Be 

aware that low inductance may result in discontinuous 

mode operation, which further reduces maximum load 

current.
For more information about maximum output current and 

discontinuous operation, see Analog Devices Application 

Note 44. 
Finally, for duty cycles greater than 50% (V

OUT

/V

IN 

> 0.5), 

a minimum inductance is required to avoid sub-harmonic 

oscillation. See Application Note 19. 

Input Capacitor

Bypass the input of the LT8607 circuit with a ceramic 

capacitor of X7R or X5R type. Y5V types have poor per-

formance over temperature and applied voltage, and 

should not be used. A 4.7µF to 10µF ceramic capacitor 

is adequate to bypass the LT8607 and will easily handle 

the ripple current. Note that larger input capacitance is 

required when a lower switching frequency is used. If 

the input power source has high impedance, or there is 

Summary of Contents for Analog Devices LT8607

Page 1: ...rt or tracking The DFN pack age omits these pins and can be purchased in pulse skip ping or Burst Mode operation APPLICATIONS Wide Input Voltage Range 3 0V to 42V Ultralow Quiescent Current Burst Mode...

Page 2: ...erature ranges The temperature grade is identified by a label on the shipping container Tape and reel specifications Some packages are available in 500 unit reels through designated sales channels wit...

Page 3: ...time PARAMETER CONDITIONS MIN TYP MAX UNITS Feedback Reference Voltage MSOP Package VIN 6V ILOAD 100mA VIN 6V ILOAD 100mA l 0 774 0 762 0 778 0 778 0 782 0 798 V V DFN Package VIN 6V ILOAD 100mA VIN 6...

Page 4: ...0 25 CHANGE IN V OUT 8607 G06 TA 25 C unless otherwise noted fSW 2MHz VIN 12V VIN 24V L 4 7 H SYNC 0V OR LT8607 DFN IOUT mA 0 125 250 375 500 625 750 50 55 60 65 70 75 80 85 90 95 100 EFFICIENCY 8607...

Page 5: ...30 50 70 90 110 130 150 80 85 90 95 100 105 110 MINIMUM OFF TIME ns 8607 G15 TYPICAL PERFORMANCE CHARACTERISTICS Top FET Current Limit vs Duty Cycle Top FET Current Limit vs Temperature Switch Drop vs...

Page 6: ...1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 0 FB VOLTAGE V 8607 G21 TEMPERATURE C 50 30 10 10 30 50 70 90 110 130 150 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 SOFT START CURRENT A 8607 G22 VIN VOUT RLOAD...

Page 7: ...VIN 12V VOUT 5V 250mA TO 750mA COUT 22 F fSW 2MHz 200ns DIV ILOAD 200mA DIV VSW 10V DIV 8607 G27 36VIN TO 5VOUT AT 500mA 2MHz 2 s DIV VOUT 20mV DIV ILOAD 200mA DIV VSW 10V DIV 8607 G28 12VIN TO 5VOUT...

Page 8: ...ack resistor divider tap to this pin TR SS MSOP Only Output Tracking and Soft Start Pin This pin allows user control of output voltage ramp rate during start up A TR SS voltage below 0 778V forces the...

Page 9: ...n reducing the input supply current to 1 7 A In a typical application 3 0 A will be consumed from the input supply when regulating with no load The SYNC pin is tied low to use Burst Mode operation and...

Page 10: ...ase but only up to the switching frequency programmed by the resistor at the RT pin as shown in Table 1 The output load at which the LT8607 reaches the programmed frequency varies based on input volta...

Page 11: ...ller inductor and capacitor values may be used The disadvan tages are lower efficiency and a smaller input voltage range The highest switching frequency fSW MAX for a given application can be calculat...

Page 12: ...um output current IOUT MAX which is a function of the switch current limit ILIM and the ripple current IOUT MAX ILIM IL 2 The peak to peak ripple current in the inductor can be calculated as follows I...

Page 13: ...en VOUT and FB Increasing the output capacitance will also decrease the output voltage ripple A lower value of output capacitor can be used to save space and cost but transient performance will suffer...

Page 14: ...SS pin voltage For output tracking applications TR SS APPLICATIONS INFORMATION can be externally driven by another voltage source From 0V to 0 778V the TR SS voltage will override the internal 0 778V...

Page 15: ...Input Protection The LT8607 will tolerate a shorted output Several features are used for protection during output short circuit and brownout conditions The first is the switching frequency will be fo...

Page 16: ...on if safe junction temperature is exceeded PCB Layout For proper operation and minimum EMI care must be taken during printed circuit board layout Note that large switched currents flow in the LT8607...

Page 17: ...N 5 6V to 42V VOUT 5V 750mA POWER GOOD fSW 2MHz C1 0 1 F C2 4 7 F X7R 1206 C3 1 F C4 22 F X7R 1206 8607 TA03 C5 10pF L1 2 2 H R1 18 2k R2 1M R3 309k L1 XFL3012 222ME R4 100k C6 10nF VIN EN UV SYNC LT8...

Page 18: ...10nF VIN EN UV SYNC LT8607 INTVCC TR SS RT GND FB PG SW BST VIN 3 2V to 20V 42V TRANSIENT VOUT 1 8V 750mA POWER GOOD fSW 2MHz C1 0 1 F C2 4 7 F C9 33 F C7 4 7 F C8 4 7 F C3 1 F C4 22 F X7R 1206 8607...

Page 19: ...EAD FLASH OR PROTRUSIONS INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0 152mm 006 PER SIDE 5 LEAD COPLANARITY BOTTOM OF LEADS AFTER FORMING SHALL BE 0 102mm 004 MAX 6 EXPOSED PAD DIMENSION DOES INC...

Page 20: ...BE SOLDER PLATED 6 SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 0 55 0 05 BOTTOM VIEW EXPOSED PAD 0 23 REF 0 335 REF 0 335 REF 0 75 0 05 1 4 8 5 PIN 1 BAR TOP MA...

Page 21: ...st paragraph and Figure 2 to include DFN option Clarified Applications section to include DFN operation Added DFN Package Description 1 2 2 3 6 8 9 10 14 15 20 B 11 17 Added H grade option Clarified O...

Page 22: ...s LT8614 42V 4A 96 Efficiency 2 2MHz Synchronous MicroPower Step Down DC DC Converter with IQ 2 5 A VIN 3 4V to 42V VOUT 0 97V IQ 2 5 A ISD 1 A 3mm 4mm QFN 18 Package LT8612 42V 6A 96 Efficiency 2 2MH...

Reviews: