background image

LT8607/LT8607B

10

Rev. C

For more information 

www.analog.com

APPLICATIONS INFORMATION

Achieving Ultralow Quiescent Current

To enhance efficiency at light loads, the LT8607 enters 

into low ripple Burst Mode operation, which keeps the 

output capacitor charged to the desired output voltage 

while minimizing the input quiescent current and mini-

mizing output voltage ripple. In Burst Mode operation the 

LT8607 delivers single small pulses of current to the out-

put capacitor followed by sleep periods where the output 

power is supplied by the output capacitor. While in sleep 

mode the LT8607 consumes 1.7µA.
As the output load decreases, the frequency of single cur-

rent pulses decreases (see Figure 1) and the percentage 

of time the LT8607 is in sleep mode increases, result-

ing in much higher light load efficiency than for typical 

converters. By maximizing the time between pulses, the 

converter quiescent current approaches 3.0µA for a typi-

cal application when there is no output load. Therefore, 

to optimize the quiescent current performance at light 

loads, the current in the feedback resistor divider must 

be minimized as it appears to the output as load current. 
While in Burst Mode operation the current limit of the 

top switch is approximately 250mA resulting in output 

voltage ripple shown in Figure 3. Increasing the output 

capacitance will decrease the output ripple proportionally. 

As load ramps upward from zero the switching frequency 

will increase but only up to the switching frequency 

programmed by the resistor at the RT pin as shown in 

Table 1. The output load at which the LT8607 reaches the 

programmed frequency varies based on input voltage, 

output voltage, and inductor choice.
For some applications it is desirable for the LT8607 to 

operate in pulse-skipping mode, offering two major differ-

ences from Burst Mode operation. First is the clock stays 

awake at all times and all switching cycles are aligned to 

the clock. In this mode much of the internal circuitry is 

awake at all times, increasing quiescent current to several 

hundred µA. Second is that full switching frequency is 

reached at lower output load than in Burst Mode operation 

as shown in Figure 2. To enable pulse-skipping mode the 

SYNC pin is floated. To achieve spread spectrum modula-

tion with pulse-skipping mode, the SYNC pin is tied high. 

While a clock is applied to the SYNC pin the LT8607 will 

also operate in pulse-skipping mode. The LT8607 DFN is 

Figure 1. Burst Frequency vs Output Current

R

T

 = 18.2kΩ

V

IN

 = 12V

L = 2.2µH

V

OUT

 = 3.3V

INPUT VOLTAGE (V)

0

5

10 15 20 25 30 35 40 45

0

25

50

75

100

125

150

OUTPUT CURRENT (mA)

8607 F02

2µs/DIV

V

OUT

20mV/DIV

I

LOAD

200mA/DIV

V

SW

10V/DIV

8607 F03

programmed for Burst Mode operation and cannot enter 

pulse-skipping mode. The LT8607B DFN is programmed 

for pulse-skipping mode and cannot enter Burst Mode 

operation.

OUTPUT CURRENT (mA)

0

25

50

75

100

125

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

SWITHCING FREQUENCY (kHz)

8607 F01

V

IN

 = 12V

L = 2.2µH

V

OUT

 = 3.3V

SYNC = 0V OR LT8607 DFN

Figure 2. Minimum Load to Full Frequency 

(SYNC Float to 1.9V) (MSOP or LT8607B DFN)

Figure 3. Burst Mode Operation

Summary of Contents for Analog Devices LT8607

Page 1: ...rt or tracking The DFN pack age omits these pins and can be purchased in pulse skip ping or Burst Mode operation APPLICATIONS Wide Input Voltage Range 3 0V to 42V Ultralow Quiescent Current Burst Mode...

Page 2: ...erature ranges The temperature grade is identified by a label on the shipping container Tape and reel specifications Some packages are available in 500 unit reels through designated sales channels wit...

Page 3: ...time PARAMETER CONDITIONS MIN TYP MAX UNITS Feedback Reference Voltage MSOP Package VIN 6V ILOAD 100mA VIN 6V ILOAD 100mA l 0 774 0 762 0 778 0 778 0 782 0 798 V V DFN Package VIN 6V ILOAD 100mA VIN 6...

Page 4: ...0 25 CHANGE IN V OUT 8607 G06 TA 25 C unless otherwise noted fSW 2MHz VIN 12V VIN 24V L 4 7 H SYNC 0V OR LT8607 DFN IOUT mA 0 125 250 375 500 625 750 50 55 60 65 70 75 80 85 90 95 100 EFFICIENCY 8607...

Page 5: ...30 50 70 90 110 130 150 80 85 90 95 100 105 110 MINIMUM OFF TIME ns 8607 G15 TYPICAL PERFORMANCE CHARACTERISTICS Top FET Current Limit vs Duty Cycle Top FET Current Limit vs Temperature Switch Drop vs...

Page 6: ...1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 0 FB VOLTAGE V 8607 G21 TEMPERATURE C 50 30 10 10 30 50 70 90 110 130 150 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 SOFT START CURRENT A 8607 G22 VIN VOUT RLOAD...

Page 7: ...VIN 12V VOUT 5V 250mA TO 750mA COUT 22 F fSW 2MHz 200ns DIV ILOAD 200mA DIV VSW 10V DIV 8607 G27 36VIN TO 5VOUT AT 500mA 2MHz 2 s DIV VOUT 20mV DIV ILOAD 200mA DIV VSW 10V DIV 8607 G28 12VIN TO 5VOUT...

Page 8: ...ack resistor divider tap to this pin TR SS MSOP Only Output Tracking and Soft Start Pin This pin allows user control of output voltage ramp rate during start up A TR SS voltage below 0 778V forces the...

Page 9: ...n reducing the input supply current to 1 7 A In a typical application 3 0 A will be consumed from the input supply when regulating with no load The SYNC pin is tied low to use Burst Mode operation and...

Page 10: ...ase but only up to the switching frequency programmed by the resistor at the RT pin as shown in Table 1 The output load at which the LT8607 reaches the programmed frequency varies based on input volta...

Page 11: ...ller inductor and capacitor values may be used The disadvan tages are lower efficiency and a smaller input voltage range The highest switching frequency fSW MAX for a given application can be calculat...

Page 12: ...um output current IOUT MAX which is a function of the switch current limit ILIM and the ripple current IOUT MAX ILIM IL 2 The peak to peak ripple current in the inductor can be calculated as follows I...

Page 13: ...en VOUT and FB Increasing the output capacitance will also decrease the output voltage ripple A lower value of output capacitor can be used to save space and cost but transient performance will suffer...

Page 14: ...SS pin voltage For output tracking applications TR SS APPLICATIONS INFORMATION can be externally driven by another voltage source From 0V to 0 778V the TR SS voltage will override the internal 0 778V...

Page 15: ...Input Protection The LT8607 will tolerate a shorted output Several features are used for protection during output short circuit and brownout conditions The first is the switching frequency will be fo...

Page 16: ...on if safe junction temperature is exceeded PCB Layout For proper operation and minimum EMI care must be taken during printed circuit board layout Note that large switched currents flow in the LT8607...

Page 17: ...N 5 6V to 42V VOUT 5V 750mA POWER GOOD fSW 2MHz C1 0 1 F C2 4 7 F X7R 1206 C3 1 F C4 22 F X7R 1206 8607 TA03 C5 10pF L1 2 2 H R1 18 2k R2 1M R3 309k L1 XFL3012 222ME R4 100k C6 10nF VIN EN UV SYNC LT8...

Page 18: ...10nF VIN EN UV SYNC LT8607 INTVCC TR SS RT GND FB PG SW BST VIN 3 2V to 20V 42V TRANSIENT VOUT 1 8V 750mA POWER GOOD fSW 2MHz C1 0 1 F C2 4 7 F C9 33 F C7 4 7 F C8 4 7 F C3 1 F C4 22 F X7R 1206 8607...

Page 19: ...EAD FLASH OR PROTRUSIONS INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0 152mm 006 PER SIDE 5 LEAD COPLANARITY BOTTOM OF LEADS AFTER FORMING SHALL BE 0 102mm 004 MAX 6 EXPOSED PAD DIMENSION DOES INC...

Page 20: ...BE SOLDER PLATED 6 SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 0 55 0 05 BOTTOM VIEW EXPOSED PAD 0 23 REF 0 335 REF 0 335 REF 0 75 0 05 1 4 8 5 PIN 1 BAR TOP MA...

Page 21: ...st paragraph and Figure 2 to include DFN option Clarified Applications section to include DFN operation Added DFN Package Description 1 2 2 3 6 8 9 10 14 15 20 B 11 17 Added H grade option Clarified O...

Page 22: ...s LT8614 42V 4A 96 Efficiency 2 2MHz Synchronous MicroPower Step Down DC DC Converter with IQ 2 5 A VIN 3 4V to 42V VOUT 0 97V IQ 2 5 A ISD 1 A 3mm 4mm QFN 18 Package LT8612 42V 6A 96 Efficiency 2 2MH...

Reviews: