background image

Page 23

XP14 OPERATING SEQUENCE

This is the sequence of operation for XP14 series units.
The sequence is outlined by numbered steps which cor-
respond to circled numbers on the adjacent diagram.
The steps are identical for both cooling and first stage
heating demand with the exception reversing valve L1
is energized during cooling demand and de−energized
during heating demand.

NOTE− Transformer in indoor unit supplies power (24 VAC)
to the thermostat and outdoor unit controls.

COOLING:

Internal thermostat wiring energizes terminal  O  by cooling
mode selection, energizing the reversing valve L1.
1 − Demand  initiates at Y1 in the thermostat.
2 − 24VAC energizes compressor contactor K1.
3 − K1-1 N.O. closes, energizing compressor (B1) and out-

door fan motor (B4).

END OF COOLING DEMAND:

4 − Demand is satisfied. Terminal Y1 is de-energized.

5 − Compressor contactor K1 is de-energized.
6  − K1-1 opens and compressor (B1) and outdoor fan

motor (B4) are de-energized and stop immediate-
ly.

FIRST STAGE HEAT:

Internal thermostat wiring de−energizes terminal  O  by heat-
ing  mode selection, de−energizing the reversing valve L1.
See steps 1, 2  and 3.

End of FIRST STAGE HEAT:

See steps 4, 5 and 6.

DEFROST MODE:

         When a defrost cycle is initiated, the control energizes

the reversing valve solenoid and turns off the con-
denser fan. The control will also put 24VAC on the
W1" (auxiliary heat) line. The unit will stay in this
mode until either the coil sensor temperature is
above the selected termination temperature, the de-
frost time of 14 minutes has been completed, or the
room thermostat demand cycle has been satisfied.
(If the temperature select shunt is not installed, the
default termination temperature will be 90°F.) If the
room thermostat demand cycle terminates the
cycle, the defrost cycle will be held until the next
room thermostat demand cycle. If the coil sensor
temperature is still below the selected termination
temperature, the control will continue the defrost
cycle until the cycle is terminated in one of the meth-
ods mentioned above. If a defrost is terminated by
time and the coil temperature did not remain above
35°F (2°C) for 4 minutes the control will go to the
34−minute Time/Temperature mode.

Summary of Contents for Elite XP14018

Page 1: ...ated for HFC 410A WARNING Warranty will be voided if covered equipment is re moved from original installation site Warranty will not cover damage or defect resulting from Flood wind lightning or insta...

Page 2: ...t protection amps 20 30 30 30 40 50 60 3 Minimum circuit ampacity 11 9 17 5 17 0 19 4 24 2 29 34 8 Compressor Rated Load Amps 8 97 13 46 13 1 14 1 17 94 21 79 26 41 p Locked Rotor Amps 48 58 64 77 112...

Page 3: ...OR FAN COMPRESSOR HIGH PRESSURE SWITCH REVERSING VALVE FILTER DRIER CONTROL BOX EXPANSION VALVE VAPOR LINE SERVICE VALVE LIQUID LINE SERVICE VALVE A Control Box Figure 2 XP14 units are not equipped wi...

Page 4: ...g con ditions during the defrost cycle and 90 seconds after the termina tion of defrost when the average ambient sensor temperature is below 15 F 9 C for 90 seconds following the start up of the compr...

Page 5: ...cted as being open shorted or out of the temperature range of the sensor the control will not perform demand de frost operation The control will revert to time temperature defrost operation and will d...

Page 6: ...l attempt to self calibrate after this and all other de frost cycle s Calibration success depends on stable system tempera tures during the 20 minute calibration period If the control fails to calibra...

Page 7: ...horted If a fault exists the unit will remain in Heat Mode and no further test mode operation will be executed until the test short is removed and re applied If no fault exists and ambient temperature...

Page 8: ...Valve ON W1 line ON Monitor coil temperature and time in defrost mode HOW DID DEFROST TERMINATE Coil temperature was above 35 F 2 C for 4 min of the 14 min de frost OR reached defrost termination tem...

Page 9: ...hat control has internal component failure Cycle 24 volt power to control If code does not clear replace control FAULT LOCKOUT CODES Each fault adds 1 strike to that code s counter 5 strikes per code...

Page 10: ...ll is a simple compression concept centered around the unique spiral shape of the scroll and its inherent properties Figure 11 shows the basic scroll form Two identical scrolls are mated together form...

Page 11: ...nventional Lennox cleanup practices must be used Due to its efficiency the scroll compressor is capable of draw ing a much deeper vacuum than reciprocating compres sors Deep vacuum operation can cause...

Page 12: ...pole single throw high pressure switch is located in the liquid line This switch shuts off the compres sor when liquid line pressure rises above the factory setting The switch is normally closed and i...

Page 13: ...ON OF REFRIGERANT FLOW SERVICE PORT SUCTION EXPANSION CHECK VALVE INDOOR UNIT OUTDOOR UNIT LIQUID LINE SERVICE PORT GAUGE MANIFOLD INTERNAL COMPRESSOR LIMIT DISTRIBUTOR INDOOR COIL COIL SENSOR FIGURE...

Page 14: ...ustable wrench 2 Use a service wrench with a hex head extension to back the stem out counterclockwise as far as it will go NOTE Use a 3 16 hex head extension for 3 8 line sizes or a 5 16 extension for...

Page 15: ...10A cylinder 4 Connect a cylinder of nitrogen with a pressure regulat ing valve to the center port of the manifold gauge set 5 Connect the manifold gauge set high pressure hose to the vapor valve serv...

Page 16: ...nute period after shutting off the vacuum pump and closing the manifold gauge valves 9 When the absolute pressure requirement above has been met disconnect the manifold hose from the vacu um pump and...

Page 17: ...within 3 DT 80 24 24 24 23 23 22 22 22 20 19 18 17 16 15 78 23 23 23 22 22 21 21 20 19 18 17 16 15 14 76 22 22 22 21 21 20 19 19 18 17 16 15 14 13 74 21 21 21 20 19 19 18 17 16 16 15 14 13 12 72 20 20...

Page 18: ...387 146 397 145 369 146 374 142 384 146 401 143 105 41 402 148 412 147 424 147 394 147 399 143 411 148 426 145 110 38 430 149 441 148 454 150 421 148 428 145 439 149 452 146 115 45 465 150 471 151 48...

Page 19: ...PUMP Subcool Target Cooling Heating 5 F 1 F Add charge INDOOR HEAT MATCH UP PUMP Subcool Target Cooling Heating 5 F 1 F Add charge XP14 018 lb oz XP14 030 cont d lb oz XP14 042 cont d lb oz CBX27UH 0...

Page 20: ...OE oils used with HFC 410A refrig erant absorb moisture very quickly It is very impor tant that the refrigerant system be kept closed as much as possible DO NOT remove line set caps or service valve s...

Page 21: ...cooling the unit should be gauged and refrigerant charge checked Refer to section on refrigerant charging in this instruction 1 Clean and inspect condenser coil Coil may be flushed with a water hose a...

Page 22: ...Page 22 VII WIRING DIAGRAM AND SEQUENCE OF OPERATION XP14 UNIT DIAGRAM 5 1 2 3 4 6...

Page 23: ...l thermostat wiring de energizes terminal O by heat ing mode selection de energizing the reversing valve L1 See steps 1 2 and 3 End of FIRST STAGE HEAT See steps 4 5 and 6 DEFROST MODE Whena defrost c...

Reviews: