background image

4

USER MANUAL

100% 

GEOTHERMAL HEAT

2.1.  Lämpöässä structure and operating principle

The Lämpöässä ESi/EMi/ELi series are especially suitable for use as the 
primary heating system of new and renovated residential buildings and 
secondary  residences.  In  order  to  ensure  trouble-free  operation,  all 
Lämpöässä  geothermal  heat  pumps  have  been  test-run,  set  up  and 
tested by the manufacturer. If a geothermal heat pump is being used in 
the part-power configuration, for example, because high temperature is 
required in the radiator system, the heating system must be dimensioned 
and adjusted so that the return water temperature is always below +55 
°C.  By  part-power  we  hereby  mean  that  the  electric  heating  element 
(immersion heater) is allowed to switch on if necessary.

Because  Lämpöässä  ESi/EMi/ELi  series  doesn’t  include  integrated  sto-
rage  tank,  it  needs  a  separate  storage  tank  to  function.  The  size  and 
structure  of  the  storage  tank  can  be  chosen  due  to  the  need  for  hot 
domestic water. For the operating principle and main components of Esi/
Emi series, see the picture on page 6. The picture has also been dis-
cussed in Sections 2.1.1-2.1.3.

2.1.1. Heat collection circuit

The geothermal heat system circulates water/ethanol mixture protected 
against freezing in the heat collection circuit in order to collect thermal 
energy accumulated in soil through solar radiation. The heat collection 
piping used comprises a bore hole or plastic pipe (PEM 40/10) placed at 
least 1-1.2 metres deep in soil or at least 3 metres deep in water. The 
circulating mixture warms up by a few degrees and delivers this thermal 
energy to the geothermal heat pump’s EVAPORATOR (1), i.e., the heat 
exchanger. The temperature of the heat collection fluid arriving from the 
soil to the evaporator is approx. 0 ºC.*  This temperature can be lower in 
winter and higher in summer. At the evaporator, the energy of the heat 
collection fluid is transferred to the low-pressure refrigerant circulating 
inside the heat pump. The refrigerant is evaporated using the thermal 
energy.

2.1.2. Compressor unit

From the evaporator, refrigerant vapour is transferred to COMPRESSOR 
(2) for ramping up the pressure. This is accompanied by steep tempera-
ture rise. In the course of the heat pump process, the refrigerant tem-
perature is the highest after the compressor, in excess of 100 ºC, and the 
refrigerant is referred to as ’hot gas’. 

1.  Safety

In order to ensure trouble-free operation of the Lämpöässä geothermal 
heating  system  and  achieve  the  best  efficiency,  the  system  must  be 
transported and installed in accordance with the manufacturer’s instruc-
tions. After performance of installation works, the installation checklist 
must be reviewed in order to minimise the risk of potential errors. The 
manufacturer shall not accept any responsibility for equipment defects or 
related expenses caused through installation faults.

The pipe and electrical installations for the Lämpöässä geothermal heat-
ing  systems  can  only  be  installed  by  qualified  persons.  If  problems 
should occur during installation, we recommend that you contact your 
dealer or consult with Lämpöässä maintenance specialists by phone. 

If the fault symbol is displayed on the touch screen, a system 
malfunction has occurred. Press this button to display infor-
mation on the cause of the malfunction.

Press  this  button  for  additional  information  on  the  touch 
screen data.

2.  Geothermal heating system operation

A geothermal (or ground source) heat pump can extract geothermal heat 
from soil, water bodies or a bore hole. For an overview of the heat pump 
and its operating environment, see the picture below. Of the total thermal 
energy  required  for  heating,  Lämpöässä  collects  more  than  75%  from 
natural sources. For thermal energy collection, approx. 25% of electrical 
energy is required for running the various system components.

The geothermal heating system consists of heat collection piping, water/
ethanol  (ethyl  alcohol)  mixture  circulating  within  the  piping,  and  a 
ground source heat pump unit. The ground source heat pump unit com-
prises an integrated hot water storage tank, compressor, heat exchang-
ers, and closed refrigerant circuit, i.e., compressor unit. The heat collec-
tion  fluid  in  the  ground  circuit,  the  refrigerant  and  the  water  in  the 
heating network never mix at any stage of the process. Heat is transferred 
between fluids using plate heat exchangers.

i

Summary of Contents for ELI 60-90

Page 1: ...100 GEOTHERMAL HEAT L MP SS 10 2016 L MP SS GROUND SOURCE HEAT PUMP ESI 6 17 EMI 22 43 ELI 60 90 INSTRUCTIONS FOR USE INSTALLATION AND MAINTENANCE...

Page 2: ...L mp ss for many decades to come Please familiarize yourself with these instruc tions for use and maintenance Keep the instructions for future use and reference should problems occur These instructio...

Page 3: ...ce requirements 19 4 2 HVAC installation 19 4 2 1 Heat collection circuit and fill group installation 19 4 2 2 Filling and de aeration of the heat collection circuit 20 4 2 3 Connections between heat...

Page 4: ...gerant vapour is transferred to COMPRESSOR 2 for ramping up the pressure This is accompanied by steep tempera ture rise In the course of the heat pump process the refrigerant tem perature is the highe...

Page 5: ...vaporator can commence 2 1 3 Hot water storage tank It is possible to connect multiple storage tanks to ESi EMi ELi models to store the thermal energy created These storage tanks can vary in size L mp...

Page 6: ...ile final heating takes place inside the coil located at the tank s upper part In general domes tic water temperature must exceed that of the heating water Owing to the two stage heat release of the s...

Page 7: ...or L mp ss offers multiple solutions for control of the cooling with ss Control control system These are available as accessories The L mp ss product family includes wall and ceiling mounted fan units...

Page 8: ...unctions 3 4 1 Room temperature adjustment The heat distribution circuit circuits heat curve setting can be adjusted by using the home screen shortcut Room temperature adjustment to achieve room tempe...

Page 9: ...e away function shortcut can be used to save energy when the residents are away for a long holiday trip for example The function Away changes the heat distribution circuit and storage tank temperature...

Page 10: ...that time and temperature have been set and the timer function has been activated 3 4 7 Heating curves This shortcut allows accessing the Heating curves menu which will be discussed in more detail in...

Page 11: ...C min and 55 C max The difference between Min and Max values can be 2 10 C The maxi mum allowed storage tank top and bottom section temperature set value is 60 C in case of full power geothermal heat...

Page 12: ...essor is seldom on and there is less superheat ing for domestic hot water production In such a case the storage tank upper part and lower part temperatures are close to each other 3 5 2 Heating curves...

Page 13: ...adjust the brightness of the screen and also the time after the screen goes off 3 5 3 3 Min and max temperature of HD circuits Set values are minimum possible values min and maximum possible values ma...

Page 14: ...ng circuits where summer function is effecting Circuit can be active during a whole summer when it is controlling bathroom area for example 3 5 3 7 Brine circuit circulation pump control This screen a...

Page 15: ...hen the cooling system is running In addition the menu will display the current room temperature coolant temperature humidity and dew point value as well as system status heating cooling off External...

Page 16: ...h the MASTER marking and other devices with SLAVE marking All heat pumps can be monitored and controlled from each heat pumps control screen The compressors rotation extra accessory can be enabled whe...

Page 17: ...ll of the additional features acquired are displayed on the Optional equipment screen Possible optional equipment includes Optional equipment For more information see Heat distribution circuit 2 Adjus...

Page 18: ...n platform elements and their fixation screws 4 pc To remove the platform lift the equipment by a fork lift for example 4 1 2 Ground source heat pump installation area We recommend that the L mp ss gr...

Page 19: ...returning line from the heat collection circuit Esi 1 Lauhduttimelta meno 2 Lauhduttimelle paluu 3 Tulistimelta meno 4 Tulistimelle paluu 5 Maapiiriin meno 6 Maapiirist paluu 1 2 3 4 5 6 1 Flow from...

Page 20: ...the motor protection switch QM1 on NOTE When using the system s own brine circulation pump for 1 2 4 5 3 de aeration purposes check that the flow direction of the separate submersible pump is always...

Page 21: ...tion pumps with EMi ELi series determined by demand of the heatable estate Heat circulation pumps will be adjusted according to manufacturer s instructions Grundfos UPM3 AUTO heat circulation pump whi...

Page 22: ...ctricians are permitted to carry out electrical work on the heat pump according to general regulations GSHP El network Fuse size slow A bivalent models Esi 6 400V 3N 3x10 16 Esi 9 400V 3N 3x16 20 Esi...

Page 23: ...or NTC X 1 4 and X 1 2 2 X 0 7 mm2 4 3 4 Current monitor If the equipment has been installed in the part power configuration load limiting relays must be installed to the building s master electrical...

Page 24: ...r fuse The regulator is not au thorised to start the pump Check the measured set values The shut off valves are in the fill position Check that the de aeration and fill valves are in the closed positi...

Page 25: ...ne off or High pressure switch gone off The low pressure switch has gone off Check functional ity of the brine circuit pump by running it through the mainte nance menu and acknowledge the alarm text d...

Page 26: ...the page You can see earlier alarms by pressing the alarm history button at the menu functions The software automatically stores the newest 100 fault messages This menu allows resetting the fault log...

Page 27: ...nput statuses Digital Input ID 1 Compressor 1 Motor protection 10 Low pressure alarm circuit 1 2 Not in use 11 High pressure alarm circuit 1 3 Brine pump 1 Run indicator 12 Compressor 1 Run indicator...

Page 28: ...ssa alakulmassa olevasta painikkeesta Edelliselle sivulle palataan n yt n oikeassa alakulmassa olevasta nuolipai nikkeesta Oikean yl kulman i painikkeesta avautuu ohjesivu Toimintah iri ss yl palkkiin...

Page 29: ...setting 50 s If integration time is 10 s the valve position is changed once in every 10 s if required Derivative time 0 10 s Temperature diver gence reaction time Factory setting 0 The longer the der...

Page 30: ...he soft starter alarms can be activated at this page 5 4 12 Super heat valve control This menu is for adjusting superheat trim valve settings Value in the menu indicates the setting point when compres...

Page 31: ...ng Three way valve control settings in a free cooling Digital output selection in flexible cooling Manual mode for cooling is intended for testing the function Manual settings can be controlled from t...

Page 32: ...e voltage fluctuations over 10 of the nominal voltage lightning fire or other respective event Transport dam ages are not covered by the warranty Also the warranty does not cover situations caused by...

Page 33: ...3 58 13 86 24 Cooling power at temperature 35 C 2 kW 6 91 8 49 10 09 10 24 12 75 12 91 14 37 17 57 23 19 33 15 46 67 67 03 Cooling power at temperature 55 C 2 kW 5 62 6 88 8 16 8 19 10 28 10 32 11 69...

Page 34: ...nal flow T 4K l s 0 48 0 59 0 70 0 68 0 89 0 83 1 00 1 24 1 64 2 56 900 Maximum external pressure drop kPa 66 65 96 100 84 91 77 208 100 152 750 HEAT DISTRIBUTION CIRCUIT Energy class of HC pump A inv...

Page 35: ...A A 55 C 35 C 60 dB 00 dB 58 58 58 kW 61 61 61 kW 2015 811 2013 ELi 60 A A A B C D E F G...

Page 36: ...A A A A A B C D E F G A 2015 811 2013 X ELi 60...

Page 37: ...ions Colder 157 Warmer 154 Annual energy consumption under colder and warmer climate conditions Colder 36542 kWh a Warmer 20178 kWh a Package information Controller class III Controller contribution t...

Page 38: ...kW 4 47 COPd Tj 12 C 60 1 kW 4 73 COPd Tj bivalent temperature 58 1 kW 3 08 COPd Tj operation limit 58 1 kW 3 08 COPd Degradiation coefficient when Tj 7 C Cdh 1 00 Bivalent temperatures Heating Averag...

Page 39: ...A A 55 C 35 C 60 dB 00 dB 58 58 58 kW 61 61 61 kW 2015 811 2013 ELi 60P A A A B C D E F G...

Page 40: ...A A A A A B C D E F G A 2015 811 2013 X ELi 60P...

Page 41: ...tions Colder 157 Warmer 154 Annual energy consumption under colder and warmer climate conditions Colder 36542 kWh a Warmer 20178 kWh a Package information Controller class III Controller contribution...

Page 42: ...kW 4 47 COPd Tj 12 C 60 1 kW 4 73 COPd Tj bivalent temperature 58 1 kW 3 08 COPd Tj operation limit 58 1 kW 3 08 COPd Degradiation coefficient when Tj 7 C Cdh 1 00 Bivalent temperatures Heating Averag...

Page 43: ......

Page 44: ......

Page 45: ......

Page 46: ......

Page 47: ......

Page 48: ......

Page 49: ......

Page 50: ......

Page 51: ......

Page 52: ......

Page 53: ......

Page 54: ......

Page 55: ......

Page 56: ......

Page 57: ......

Page 58: ......

Page 59: ......

Page 60: ......

Page 61: ......

Page 62: ...L mp ss is a trademark of Suomen L mp pumpputekniikka Oy We reserve the right to make changes Suomen L mp pumpputekniikka Oy Unikontie 2 62100 Lapua FINLAND www lampoassa com R...

Reviews: