FRICK
®
QUANTUM
™
LX/HD RETROFIT
INSTALLATION INSTRUCTIONS
090.040-I (MAR 2012)
Page 10
Never run any wires through an electronic control panel
that do not relate to the function of the panel
. Electronic
control panels should never be used as a junction box. These
wires may be carrying large transients that will interfere with
the operation of the control panel. An extreme example of
this would be to run 480 volts from the starter through the
electronic control panel to an oil pump motor.
When running conduit to the electronic control panel, use
the access holes (knockouts) provided by the manufacturer.
These holes are strategically placed so that the field wiring
does not interfere with the electronics in the panel. Never
allow field wiring to come in close proximity with the con-
troller boards since this will almost always cause problems.
Do not drill into an electronic control panel to locate conduit
connections. You are probably not entering the panel where
the manufacturer would like you to since most manufactur-
ers recommend or provide prepunched conduit connections.
You may also be negating the NEMA rating of the enclosure.
Drilling can cause metal filings to land on the electronics and
create a short circuit when powered is applied. If you must
drill the panel, take the following precautions:
• First, call the panel manufacturer before drilling into the
panel to be sure you are entering the panel at the right
place.
• Take measures to avoid ESD (electrostatic discharge) to the
electronics as you prep the inside of the Electronic control
panel. This can be done by employing an antistatic wrist
band and mat connected to ground.
• Cover the electronics with plastic and secure it with mask-
ing or electrical tape.
• Place masking tape or duct tape on the inside of the panel
where you are going to drill. The tape will catch most of
the filings.
• Clean all of the remaining filings from the panel before
removing the protective plastic.
When routing conduit to the top of an electronic control
panel, condensation must be taken into consideration. Water
can condense in the conduit and run into the panel causing
catastrophic failure. Route the conduit to the sides or bottom
of the panel and use a conduit drain. If the conduit must be
routed to the top of the panel, use a sealable conduit fitting
which is poured with a sealer after the wires have been
pulled, terminated, and the control functions have been
checked. A conduit entering the top of the enclosure must
have a NEMA-4 hub type fitting between the conduit and
the enclosure so that if water gets on top of the enclosure
it cannot run in between the conduit and the enclosure. This
is extremely important in outdoor applications.
NOTE: It is simply NEVER a good practice to enter through
the top of an electronic control panel or starter panel that
does not already have knockouts provided. If knockouts
are not provided for this purpose it is obvious this is not
recommended and could VOID WARRANTY.
Never add relays, starters, timers, transformers, etc. in-
side an electronic control panel without first contacting
the manufacturer.
Contact arcing and EMI emitted from
these devices can interfere with the electronics. Relays and
timers are routinely added to electronic control panels by the
manufacturer, but the manufacturer knows the acceptable
device types and proper placement in the panel that will
keep interference to a minimum. If you need to add these
devices, contact the manufacturer for the proper device
types and placement.
Never run refrigerant tubing inside an electronic control
panel.
If the refrigerant is ammonia, a leak will totally destroy
the electronics.
If the electronic control panel has a starter built into the
same panel, be sure to run the higher voltage wires where
indicated by the manufacturer.
EMI from the wires can
interfere with the electronics if run too close to the circuitry.
Never daisy-chain or parallel-connect power or ground
wires to electronic control panels.
Each electronic control
panel must have its own control power supply and ground
wires back to the power source (Plant Transformer). Multiple
electronic control panels on the same power wires create
current surges in the supply wires, which may cause control-
ler malfunctions. Daisy-chaining ground wires, taking them
to ground at each device, allows ground loop currents to
flow between electronic control panels which also causes
malfunctions. See Figure 5.
Figure 5