background image

11

January 24, 2005

The ISL5585 R

gain equations are summarized in Table 

A1, and should be used to calculate component values for 
receive gains other than the 0dB level implemented on the 
evaluation board.

R

X

 Gain for the 5V HC55185 and 5V CODEC

The receive gain path block diagram and equations for the 
5V HC55185 and 5V CODEC are contained in Appendix B. 
The evaluation board is designed for an overall receive gain 
of 0dB. The gain path equations (EQ. 8, and EQ. 9) apply to 
this configuration. The evaluation board gain of 0dB and is 
easily achieved due to the fixed 0dB gain of the RSLIC and 
the CODEC. 

For receive gains other than 0dB. the HC55185 R

X

 gain path 

can be configured to that of the ISL5585 as shown in 
Appendix A. Both the ISL5585 and HC55185 are pin-
compatible, and have identical AC transmission gain blocks. 
When using this alternate configuration with the HC55185, 
the gain equations for the 3.3V configuration shown in Table 
1A will apply. 

The overall receive gain has a strong dependence on the 
RSLIC synthesized impedance and the correct impedance 
match.

Jumper JP13 selects the R

X

 configuration and gain for the 

ISL5585 and HC55185 RSLICs.

Transmit Gain Path, T

X

The transmit gain path circuits for both 3.3V and 5V are the 
same. However, the gain component values are different due 
to differences in the Absolute Voltage Reference Level of the 
3.3V and 5V CODECs. The transmit gain block diagram and 
equations for the 3.3V ISL5585 and 3.3V CODEC are 
contained in Appendix A.

The A-D gain of the complete line circuit is the sum of the 
CODEC A-D gain and the RSLIC G

24

 T

X

 gain. 

The receive gain path is defined by the following;

(EQ. 6)

G2W-PCM = G

24

 (RSLIC) + G

TX

 (CODEC)

The 3.3V and 5V RSLICs have the same T

gain which is 

fixed at -7.63dB. The CODEC transmit gain path contains 2 
gain blocks. An internal T

X

 op-amp with external gain setting 

resistors feeds the internal T

A-D converter. The A-D 

converter has a fixed conversion gain needed to restore the 
CODEC Absolute Voltage Reference Level to the 0dBm0 
standard value of 0.775Vrms at 600

Ω,

 at the PCM bus. The 

overall line circuit 2W to PCM gain is adjusted using the gain 
resistors at the input to the CODEC T

op amp. 

The 2W - PCM gain is defined by the following:

(EQ. 7)

G

2W-PCM

 = G

24

 (RSLIC) + G

TX

 (op amp) + G

A-D

 

(CODEC)

For the ISL:5585 and 3.3V CODEC, the TX gain needed for 
an overall gain equal to 0dB is given by:

(EQ. 8)

G

TX

 (op amp) = 0dB - G

24

 (RSLIC) - G

A-D

 (CODEC) = 

0dB -(-7.63dB) -(5dB) = 2.63dB

For the HC55185 and the 5V CODEC, the TX gain needed 
for an overall gain equal to 0dB is given by:

(EQ. 9)

G

TX

 (op amp) = 0dB - G

24

 (RSLIC) - G

A-D

 (CODEC) = 

0dB -(-7.63dB) -(0dB) = 7.63dB

The 3.3V and 5V RSLIC/CODEC T

gain equations are 

summarized in Table A1 and B1 respectively; and should be 
used to calculate transmit gains other than the 0dB 
implemented on the evaluation board.

The overall transmit gain has a strong dependence on the 
RSLIC synthesized impedance and the correct impedance 
match.

Jumper JP15 selects the T

gain for the ISL5585 and 

HC55185 RSLICs.

Trans-hybrid Balance

The trans-hybrid balance network is implemented at the 
CODEC Tx amplifier summing input. The network consists of 
a pair of resistors that sum the 180

o

 out of phase RSLIC 4W 

signal from Vtx, with the CODEC Rx signal. The magnitude 
of the 4W return signal relative to the CODEC Rx output is 
equal to the RSLIC G

44

 trans-hybrid gain. Therefore, 

complete 4W return signal cancellation occurs when the 
trans-hybrid resistor pair ratio produces a gain equal to G

44

 

as shown in the Hybrid Model diagrams contained in 
Appendices A and B.

Trans-hybrid balance performance can be tested using the 
PCM4 A11 D-D level test with a 600

 termination at the tip 

and ring terminals. The echo-return loss is typically greater 
than 23dB.

Jumper JP7 selects the proper transhybrid gain for the 
RSLIC/CODEC chip-set used.

Trans-hybrid balance has a strong dependence on RSLIC 
impedance matching and accurate T

and R

gains. In 

practice, minor deviations from the design value may occur 
due to resistor value rounding to the closest standard value.

Application Note 1168

Summary of Contents for ISL5585EVAL4

Page 1: ...M to 2W AC transmission circuits Theory of operation and the AC transmission design equations are included to enable the user to adapt the performance to meet his specific needs The operation of the r...

Page 2: ...pled by CRS Position 3 TRAP Connects the VRS connector J9 thru RC network to the device ringing input Path is AC coupled JP7 Selects the 5V or 3 3V chip set Hybrid Gain of the CODEC AC coupled by C1 J...

Page 3: ...header Refer to the specific RSLIC data sheet for detailed description of operating states Single Board Operation Description The stand alone configuration supports separate measurement of the RSLIC o...

Page 4: ...ow negative battery supply to the HC55185 device yellow wire 4 5V Positive 5V supply to the RSLIC LED detector output indicators green wire 7 thru 10 GND Twisted pair returns for external supply conne...

Page 5: ...ppearing at the tip and ring terminals Extra care is required when connecting external equipment to the tip and ring terminals during testing to prevent personnel injury and equipment damage Jumper Se...

Page 6: ...PCM4 tests can be performed on the RSLIC and the CODEC separately The RSLIC PCM4 tests use the A A tests The CODEC RX and TX gain tests use the PCM4 A D and D A tests For RSLIC gain tests the RX AC te...

Page 7: ...o the CODEC PCM output This signal path provides a measure of the trans hybrid balance for the line circuit with a 600 termination at Tip and Ring Digital Loop Back Configuration Description The digit...

Page 8: ...ed to J8 the output at JP4 should be 0 322Vrms The signal levels for digital loop back are independent of the clock selected by JP10 Dual board A A Configuration Description Two evaluation boards can...

Page 9: ...DEC master clock to 512kHz JP11 Enables the on board logic multiplexer JP12 Configures board as master SECONDARY POWER CABLE MASTER SLAVE FIGURE 4 FULL CHANNEL A A CONFIGURATION CONNECTORS AND JUMPERS...

Page 10: ...paths are connected differently The HC55185 G42 RX input is at Vrs and the gain is fixed at 0dB The ISL5585 however is required to compensate for the 3 3V CODEC attenuation i e lower 0dBm0 reference l...

Page 11: ...fixed conversion gain needed to restore the CODEC Absolute Voltage Reference Level to the 0dBm0 standard value of 0 775Vrms at 600 at the PCM bus The overall line circuit 2W to PCM gain is adjusted us...

Page 12: ...mponent Values Rp 51 Rs 66 5k Rin 37 4k ZO RS 133 3 G42 Rs Rin G24 ZO ZO 2RP ZL G44 Rs Rin ZL 2RP ZL 2RP ZO FIGURE A2 ISL5585 HYBRID BLOCK DIAGRAM TABLE A2 ISL5585 TRSANS HYBRID BALANCE EQUATIONS ISL5...

Page 13: ...99 G42 0dB G24 7 63dB G44 0 416 7 63dB ZO RS 133 3 G42 2 ZL ZL 2RP ZO G24 ZO ZO 2RP ZL G44 ZO ZL 2RP ZO FIGURE B2 HC55185 HYBRID BLOCK DIAGRAM TABLE B2 HC55185 TRANS HYBRID BALANCE EQUATIONS HC55185 W...

Page 14: ...C E0 1 2 JP4 CODEC 5v 3 3v 3 3v 5v 5v RIN 37 4K 1 CP 1 2 3 B1100CC TECCOR Q2 CR4 1N4935 CR5 1N4935 1 1 J7 VXMIT 1 1 J8 VREC PWR CONN 24V 72 to 100V CRX 0 4uF CODEC CFB 0 47uF 1 2 3 JP13 RP 0 Ohm 1 RS...

Page 15: ...Intersil or its subsidiaries For information regarding Intersil Corporation and its products see www intersil com January 24 2005 ISL5585EVAL4 Electrical Component List COMPONENT VALUE TOLERANCE RATI...

Reviews: