Infineon CoolGaN IGI60F1414A1L Manual Download Page 3

  

Application Note 

3 of 27 

V 1.0  

                                                                                                                                                                                                                                                                     2021-04-30  

CoolGaN™ IPS half-bridge evaluation board with IGI60F1414A1L 

  

Introduction 

   

1

 

Introduction 

This hardware provides an easy and quick way to setup and test Infineon’s CoolGaN™ IPS half-bridge chipset. 
The hardware is configurable for boost, buck, inverter operation, pulse testing or continuous full-power 
operation. Multiple test points are provided to connect signals to an oscilloscope for observation and 
measuring the switching performance of CoolGaN™ transistors and gate driver embedded in the chipset. This 
board provides a quick way to evaluate the digital in-power-out feature of the installed CoolGaN™ IPS half-
bridge chipset.  

The circuit board has a single PWM input intended for connection to a 50 Ω pulse or signal generator. Moreover, 
direct access to the digital inputs of the IPS is provided for microcontroller interface. The power for the low 
voltage side will be provided from a single 5 V external power supply. Default deadtime between the high and 
low-side is pre-set to 100 ns, but is adjustable via trimpots by the user. An external (user-supplied) inductor is 
needed to configure the hardware in multiple possible test setups through the supplied pluggable terminal-
block connector. The output and bus voltage can range up to 450 V which is limited by the capacitor rating. This 
half-bridge can switch continuous currents of 4 A, and peak currents of 10 A, hard or soft-switching. Depending 
on the IPS chipset power dissipation, the operating frequency can be up to 1 MHz (limited to about 3 W per 
device with appropriate heatsink and airflow). 

1.1

 

Evaluation board specifications 

Table 1

 

Evaluation board specifications and limits 

Parameter 

Values 

Unit  Note 

Min.  Typ.  Max. 

V

cc

 input voltage 

4.8 

5.0 

5.2 

 

V

cc

 input current 

25 

 

 

mA 

 

PWM logic input levels  
(Applied to J1 terminal)  

 

Standard 5 V TTL levels, 50 Ω terminated 

PWM logic input levels  
(Applied to TP1 and TP2)  

 

Standard 3.3/5 V CMOS/TTL levels 

V

in+

 to V

in-

 

400 

450 

Limited by capacitor voltage ratings 

V

O

 to V

in-

 

 

450 

(There may be ±30 V spikes appearing on V

o

Chipset transistor current, DC 

 

 

Keep the case temperature below 125 °C 

Chipset transistor current, pulse 
(non-repetitive) 

 

 

23 

Keep the case temperature below 125 °C 

Chipset total power dissipation 
 

 

 



No heatsink (T

case

<125 °C, T

a

=25°C) 

With heatsink, airflow to keep T

case

<125 °C 

Operating frequency 

(DC) 

 

MHz 

Within dissipation, temperature limits 

PWM pulse width 

100 

 

∞ 

ns 

With 100 ns deadtime setting 

Deadtime adjustment range 

 

180 

ns 

Default setting is 100 ns. If longer deadtime is 
necessary, C9, C15 can be increased, thereby 
extending the adjustment range. 

 

Note:

 

The PCB dimensions are 60*70 mm (max). 

 

Summary of Contents for CoolGaN IGI60F1414A1L

Page 1: ...c that provides adjustable dead time Additionally the board provides direct access to the logic inputs of the CoolGaN IPS chipset to drive the chipset with an external microcontroller or digital signa...

Page 2: ...de gate driver 7 3 4 Half bridge output circuit 8 4 Setup and use 9 4 1 Test equipment needed 9 4 2 Connections to the terminal block 9 4 2 1 Connections for double pulse testing 10 4 2 2 Connections...

Page 3: ...The output and bus voltage can range up to 450 V which is limited by the capacitor rating This half bridge can switch continuous currents of 4 A and peak currents of 10 A hard or soft switching Depen...

Page 4: ...utput An oscilloscope is used to observe and measure the inductor current with a current probe switch node voltage or any other signal on the hardware board Table 2 includes all the available test poi...

Page 5: ...node is connected to Vin Make sure that the jumpers on P1 header is placed to apply the PWMs to the IPS chipset shown in Figure 5 The outputs can be observed from TP1 and TP2 Figure 4 Input logic and...

Page 6: ...t is user s responsibility to make sure that simultaneous turn on for both high and low signal will not happen In case of using microcontroller PWM a minimum deadtime of 50 nS is recommended Figure 5...

Page 7: ...gate driver is supplied by the isolated gate driver power supply VDD_LS with about 8 V The RRC network for this channel consist of R17 R19 and C17 Additionally a fast turn off circuit including D9 an...

Page 8: ...o discharge the DC bus capacitors after disconnecting from the source Attention Do not rely on the lab power supply discarding capability when shutting it off Always ensure that the capacitors are dis...

Page 9: ...nd keep them below 450 V Use lab test power supply with current limit and set it in a proper value to avoid catastrophic damage to the board in case of any failure Eye and ear protection is recommende...

Page 10: ...he PWM applied to the J1 If a resistive load is applied and the inductor current is above the boundary condition continuous current mode then the high side will turn on in a hard switching condition T...

Page 11: ...t descriptions Test point label Description TP1 Input to the high side logic of the IPS INH TP2 Input to the low side logic of the IPS INL TP3 PWM input parallel to J1 Typical levels here should be 0...

Page 12: ...pply 4 6 Verifying and adjusting deadtime For adjusting and trimming the deadtime refer to section 4 6 in reference 1 Figure 12 and Figure 13 show the adjusted 100 ns deadtime in rising and falling ed...

Page 13: ...the next step adding the external inductor for desired test topology This example shows how to setup the board for buck topology testing Before powering up you may want to observe the gate voltages Fi...

Page 14: ...he inductor current Note that both the gate and drain voltages are clean with minimal ringing or overshoot even though the switching speed is fast Temperature of the chipset and heatsink can be monito...

Page 15: ...ng 125 C on chipset case temperature To increase the power dissipation capability of the chipset a heatsink can be attached to the bottom side of the PCB in the marked area beneath the chipset shown i...

Page 16: ...C bus the output settles at 200 V and the peak peak current will be about 5 AMP The expanded view is shown in Figure 20 Both high and low side GaN transistors are operating in ZVS mode with about 8 V...

Page 17: ...drive the half bridges with Sine PWM unipolar pattern The generated output line frequency is 60 Hz and the switching frequency is 65 kHz For this test there is no closed loop control only open loop in...

Page 18: ...Application Note 18 of 27 V 1 0 2021 04 30 CoolGaN IPS half bridge evaluation board with IGI60F1414A1L Setup and use Figure 22 Inverter setup with two half bridge evaluation boards...

Page 19: ...ote 19 of 27 V 1 0 2021 04 30 CoolGaN IPS half bridge evaluation board with IGI60F1414A1L Setup and use Figure 23 Inverter setup with two half bridge evaluation boards Figure 24 Inverter voltage and c...

Page 20: ...Application Note 20 of 27 V 1 0 2021 04 30 CoolGaN IPS half bridge evaluation board with IGI60F1414A1L Setup and use Figure 25 Thermal image of the half bridge A...

Page 21: ...lication Note 21 of 27 V 1 0 2021 04 30 CoolGaN IPS half bridge evaluation board with IGI60F1414A1L Complete schematic 5 Complete schematic Figure 26 Schematic of CoolGaN IPS half bridge evaluation bo...

Page 22: ...IPS half bridge evaluation board with IGI60F1414A1L PCB layout 6 PCB layout The evaluation board is 1 3 mm thick with 4 layers 70 m thick copper The layer stackup is depicted below Figure 27 Top laye...

Page 23: ...Application Note 23 of 27 V 1 0 2021 04 30 CoolGaN IPS half bridge evaluation board with IGI60F1414A1L PCB layout Figure 29 Lower middle copper layer Figure 30 Bottom copper layer...

Page 24: ...y Diode Not Populated 3 ES1JLR3GCT ND J1 J2 CONN MMCX JACK STR 50 OHM PCB 2 WM9481 ND LED1 LED2 LED3 LED GREEN CLEAR 0805 SMD 3 732 4986 1 ND P1 CONN HEADER VERT 4POS 2MM 1 0877580417 ND R1 R10 SMD 2...

Page 25: ...n Note 25 of 27 V 1 0 2021 04 30 CoolGaN IPS half bridge evaluation board with IGI60F1414A1L References 8 References 1 Application note on CoolGaN 600 V half bridge evaluation platform featuring EiceD...

Page 26: ...Note 26 of 27 V 1 0 2021 04 30 CoolGaN IPS half bridge evaluation board with IGI60F1414A1L Revision history Revision history Document version Date of release Description of changes V 1 0 30 04 2021 Fi...

Page 27: ...intellectual property rights of any third party with respect to any and all information given in this application note The data contained in this document is exclusively intended for technically trai...

Reviews: