Appendix 3
Moment of inertia
FHA-mini
- 45 -
Appendix 3
Moment of inertia
3-1
Calculation of mass and moment of inertia
(1) Both centerlines of rotation and gravity are the same:
The following table includes formulas to calculate mass and moment of inertia.
m: mass (kg); Ix, Iy, Iz: moment of inertia for rotation center of x-, y-, z-axis respectively (Kg
・
m
2
);
G: distance from gravity center to the surface;
ρ
: specific gravity
Unit
Length: m; Mass: kg;
Inertia: kg
・
m
2
Object form
Mass, inertia, gravity center
Object form
Mass, inertia, gravity center
Cylinder
Circular pipe
Slanted cylinder
Ball
Ellipsoidal cylinder
Cone
Rectangular pillar
Square pipe
R
L
z
x
y
ρ
L
R
π
m
2
=
2
R
m
2
1
Ix
=
+
=
3
L
R
m
4
1
Iy
2
2
+
=
3
L
R
m
4
1
Iz
2
2
R
1
L
R
2
z
x
y
R
1
:outer,
R
2
:inner
(
)
ρ
π
L
R
R
m
2
2
2
1
−
=
(
)
+
−
=
3
L
R
R
m
4
1
Iy
2
2
2
2
1
(
)
2
2
2
1
R
R
m
2
1
Ix
−
=
(
)
+
−
=
3
L
R
R
m
4
1
Iz
2
2
2
2
1
B
L
z
x
y
C
ρ
L
BC
m
4
π
=
(
)
2
2
C
B
m
16
1
Ix
+
=
+
=
3
L
4
C
m
4
1
Iy
2
2
+
=
3
L
4
B
m
4
1
Iz
2
2
R
L
z
x
y
G
ρ
π
L
R
3
π
m
2
=
2
R
m
10
3
Ix
=
(
)
2
2
L
4R
m
80
3
Iy
+
=
(
)
2
2
L
4R
m
80
3
Iz
+
=
4
L
G
=
z
x
y
C
B
A
ρ
A
BC
m
=
(
)
2
2
C
B
m
12
1
Ix
+
=
(
)
2
2
A
C
m
12
1
Iy
+
=
(
)
2
2
B
A
m
12
1
Iz
+
=
D
B
A
z
x
y
(
)
ρ
D
-
B
4AD
=
m
(
)
2
2
D
D
-
B
m
3
1
Ix
+
=
(
)
2
2
2
D
D
-
B
A
m
6
1
Iy
+
+
=
(
)
2
2
2
D
D
-
B
A
m
6
1
Iz
+
+
=
ρ
L
R
π
m
2
=
(
)
θ
θ
2
2
2
2
sin
L
cos
1
3R
m
12
1
I
+
+
=
R
L
θ
R
ρ
π
3
R
3
4
m
=
2
R
m
5
2
I
=
Summary of Contents for FHA Mini Series
Page 3: ......
Page 5: ...Chapter 1 Overview of the FHA C mini series FHA C mini 5 1 2 Ordering Code...
Page 18: ...Chapter 1 Overview of the FHA C mini series FHA C mini 18...
Page 19: ...Chapter 1 Overview of the FHA C mini series FHA C mini 19 1 14 Operating Range FHA 8C...
Page 20: ...Chapter 1 Overview of the FHA C mini series FHA C mini 20 FHA 11C...
Page 21: ...Chapter 1 Overview of the FHA C mini series FHA C mini 21 FHA 14C...