background image

 

D1054 

- SIL 2 Repeater Power Supply and Trip Amplifiers 

G.M. International ISM0067-18 

Functional Safety Manual and Application 

Application for D1054S , passive input and 1oo2 architecture of alarm trip amplifiers with relay outputs for NE load

 

D1054S 

 

Supply  

 12-24 Vdc 

3 + 

4 - 

Current or Voltage Source 

 

1 + 

2 - 

Out 1 

Safety 

PLC 

Input 

 

Alarm A 

 

Alarm B 

Not used for functional safety purpose. 

or NE load driving 

+/AC line load 

-/AC line load 

NE load 

14 

15 

 

In 1 

16 

 

2 Wire Tx 

Description:

  

For this application, enable both alarm A and B trip amplifiers programmed with equal configuration, using NE relay condition (see pages 12 and 13 for more information). 
The module is powered by connecting 12-24 Vdc power supply to Pins 3 (+ positive) - 4 (- negative). The green LED is lit in presence of supply power. 
Passive input signal from 2 wires Tx is applied to Pins 14-15.  
Relay contacts of Alarm A and Alarm B Outputs must be connected in series: Pins 6-7 are connected together by external wired jumper. Therefore between Pins 5-8 there are 2 relay 
contacts in 1oo2 series architecture which could be connected to safety PLC input or used to driving a NE load. In this case, relays are normally energized, their contacts are closed 
and load is normally energized; in case of alarm, the system de-energized to trip, so that relays are de-energized, contacts are open and load is de-energized. 
To prevent relay contacts from damaging, connect an external protection (fuse or similar), chosen according to the relay breaking capacity (see page 2 for relay contact rating). 
Analog (current or voltage) output is not used for functional safety purpose. 

Safety Function and Failure behavior:

  

D1054S is considered to be operating in Low Demand mode, as a Type B module, having Hardware Fault Tolerance (HFT) = 0. 
The failure behaviour of module (only Alarm A and Alarm B trip amplifiers is used for safety application) is described from the following definitions: 

Fail-Safe State: it’s defined as the relay outputs being de-energized or relay contacts remaining open (user must program for both alarm amplifiers the same trip point value, in 
accordance with input measured value, at which both output relays must be de-energized). 

Fail Safe: failure mode that causes the module / (sub)system to go to the defined fail-safe state without a demand from the process. 

Fail Dangerous: failure mode that leads to a measurement error of more than 3 % of correct value and therefore has the potential to not respond to a demand from the process 
(i.e. being unable to go to the defined Fail-Safe state), so that the output relays remain energized or relay contacts remain closed. 

Fail Dangerous Detected: a dangerous failure which has been detected from module internal diagnostic so that output relays are forced to be de-energized (that is to Fail-Safe 
state), with relay contacts open. 

Fail “No Effect”: failure mode of a component that plays a part in implementing the safety function but that is neither a safe failure nor a dangerous failure.  
When calculating the SFF, this failure mode is not taken into account. 

Fail “Not part”: failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness.  
When calculating the SFF this failure mode is not taken into account.

 

Both alarm A and B trip amplifiers must be programmed with equal configuration (the same trip values). 
As the module has been evaluated in accordance with Route 2H (proven-in-use) of the IEC 61508:2010, Diagnostic Coverage DC 

 60% is required for Type B elements. 

Being HFT = 0, in Low Demand mode the maximum achievable functional safety level is SIL 2. 
Failure rate date: taken from Siemens Standard SN29500. 

Failure category

 

Failure rates (FIT)

 

λ

dd

 = Total Dangerous Detected failures 

85.69 

λ

du

 = Total Dangerous Undetected failures 

33.79 

λ

sd

 = Total Safe Detected failures 

0.00 

λ

su

 = Total Safe Undetected failures 

212.80 

λ

tot safe

 = Total Failure Rate (Safety Function) = 

λ

dd

 + 

λ

du

 + 

λ

sd

 + 

λ

su

 332.28 

MTBF (safety function, 1oo2 alarm channel) = (1 / 

λ

tot safe

) + MTTR (8 hours) 

344 years 

λ

no effect

 = “No Effect” failures 

256.82 

λ

not part

 = “Not Part” failures 

136.00 

λ

tot device

 = Total Failure Rate (Device) = 

λ

tot safe

 + 

λ

no effect

 + 

λ

not part

  

725.10 

MTBF (device) = (1 / 

λ

tot device

) + MTTR (8 hours) 

157 years 

λ

sd

 

λ

su

 

λ

dd

 

λ

du

 

DC

 

0.00 FIT 

212.80 FIT 

85.69 FIT 

33.79 FIT 

71.72% 

SFF

 

89.83% 

Failure rates table according to IEC 61508:2010 Ed.2 : 

Failure rate table:

 

where DC means the diagnostic coverage for the input sensor by module internal diagnostic circuits. This type “B” system, operating in Low Demand mode with HFT = 0, 
has got DC = 71.72 % 

 60 % as required by Route 2H evaluation (proven-in-use) of the IEC 61508:2010. 

T[Proof] = 1 year

 

T[Proof] = 6 years

 

PFDavg = 1.49 E-04

 

Valid for 

SIL 2

  PFDavg = 8.94 E-04

 

Valid for 

SIL 2

 

PFDavg vs T[Proof] table 

(assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes  >10% of total SIF dangerous failures: 

PFDavg vs T[Proof] table

 (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes  

10% of total SIF dangerous failures: 

T[Proof] = 10 years

 

PFDavg = 1.49 E-03

 

Valid for 

SIL 2

 

SC 2: Systematic capability SIL 2. 

Summary of Contents for D1054S

Page 1: ...D1054 SIL 2 Repeater Power Supply and Trip Amplifiers ISM0067 18 D1054S INSTRUCTION SAFETY MANUAL SIL 2 Repeater Power Supply and Trip Amplifiers Din Rail Model D1054S...

Page 2: ...ectional within 3 dB Hart and higher frequency protocols only with mA direct current output Alarm Trip point range within rated limits of input sensor see input for step resolution ON OFF delay time 0...

Page 3: ...10 V Output Signal linear or reverse Wide Band Smart Communication Hart compatible Input and Output short circuit proof Two independent trip amplifiers Output for burnout detection Common burnout dete...

Page 4: ...te powered intrinsically safe devices check that maximum allowable voltage current Ui Vmax Ii Imax of the D1054 Associated Apparatus are not exceeded by the safety parameters Uo Voc Io Isc of the Intr...

Page 5: ...r Entity Concept or third party approved for Division 2 installations the configuration of Intrinsically Safe Equipment must be FM approved under non incendive field wiring or Entity Concept or third...

Page 6: ...red to detect High failure this failure has been classified as a dangerous detected DD failure Fail Low failure mode that causes the output signal to go below the minimum output current 4 mA Assuming...

Page 7: ...mA of full span Fail High failure mode that causes the output signal to go above the maximum output current 20 mA Assuming that the application program in the Safety logic solver is configured to dete...

Page 8: ...of the circuit diagram and is listed for completeness When calculating the SFF this failure mode is not taken into account Both alarm A and B trip amplifiers must be programmed with equal configuratio...

Page 9: ...to not respond to a demand from the process i e being unable to go to the defined Fail Safe state so that the output relays remain energized or relay contacts remain closed Fail Dangerous Detected a d...

Page 10: ...l The proof test shall be performed to reveal dangerous faults which are undetected by diagnostic This means that it is necessary to specify how dangerous undetected fault which have been noted during...

Page 11: ...in Hazardous Area Hazardous Locations or unless area is known to be onhazardous Warning substitution of components may impair Intrinsic Safety and suitability for Division 2 Zone 2 Warning de energiz...

Page 12: ...and Down keys to select the number confirm the modification with the Enter key 8 Br HI 3 Level Menu Displays the Burnout HIGH Trip Point Value configuration Press Enter to set the burnout condition tr...

Page 13: ...ring range corresponding to defined low output value Upscale input value of measuring range corresponding to defined high output value Burnout Low low burnout condition trip point value below this val...

Reviews: