For highly polished materials ε
λ
approaches zero, so that for a perfectly reflecting material
(
i.e.
a perfect mirror) we have:
For a graybody radiator, the Stefan-Boltzmann formula becomes:
This states that the total emissive power of a graybody is the same as a blackbody at the
same temperature reduced in proportion to the value of ε from the graybody.
Figure 35.8
Spectral radiant emittance of three types of radiators. 1: Spectral radiant emittance; 2: Wave-
length; 3: Blackbody; 4: Selective radiator; 5: Graybody.
Figure 35.9
Spectral emissivity of three types of radiators. 1: Spectral emissivity; 2: Wavelength; 3: Black-
body; 4: Graybody; 5: Selective radiator.
#T810190; r. AI/41890/41890; en-US
245
Summary of Contents for Exx series
Page 1: ...User s manual FLIR Exx series ...
Page 2: ......
Page 3: ...User s manual FLIR Exx series T810190 r AI 41890 41890 en US iii ...
Page 4: ......
Page 12: ......
Page 51: ...Handling the camera 10 T810190 r AI 41890 41890 en US 39 ...
Page 54: ...Handling the camera 10 10 15 Lanyard strap 10 15 1 General T810190 r AI 41890 41890 en US 42 ...
Page 226: ...Mechanical drawings 27 See next page T810190 r AI 41890 41890 en US 214 ...
Page 228: ...CE Declaration of conformity 28 See next page T810190 r AI 41890 41890 en US 216 ...
Page 229: ......
Page 234: ...Application examples 29 T810190 r AI 41890 41890 en US 222 ...
Page 275: ......
Page 277: ......