background image

 STK17TA8

Document #: 001-52039  Rev. **

Page 12 of 23

nvSRAM Operation

The STK17TA8 nvSRAM is made up of two functional compo-

nents paired in the same physical cell. These are the SRAM

memory cell and a nonvolatile QuantumTrap cell. The SRAM

memory cell operates like a standard fast static RAM. Data in the

SRAM can be transferred to the nonvolatile cell (the STORE

operation), or from the nonvolatile cell to SRAM (the RECALL

operation). This unique architecture enables all cells to be stored

and recalled in parallel. During the STORE and RECALL opera-

tions SRAM READ and WRITE operations are inhibited. The

STK17TA8 supports unlimited read and writes like a typical

SRAM. In addition, it provides unlimited RECALL operations

from the nonvolatile cells and up to 200K STORE operations.

SRAM READ

The STK17TA8 performs a READ cycle whenever E and G are

low while W and HSB are high. The address specified on pins

A

0-16

 determine which of the 131,072 data bytes are accessed.

When the READ is initiated by an address transition, the outputs

are valid after a delay of t

AVQV

 (READ cycle #1). If the READ is

initiated by E and G, the outputs are valid at t

ELQV

 or at t

GLQV

,

whichever is later (READ cycle #2). The data outputs repeatedly

respond to address changes within the t

AVQV

 access time

without the need for transitions on any control input pins, and

remain valid until another address change or until E

 

or G is

brought high, or W and HSB is brought low.

Figure 14.  AutoStore Mode

SRAM WRITE

A WRITE cycle is performed whenever E and W are low and HSB

is high. The address inputs must be stable prior to entering the

WRITE cycle and must remain stable until either E or W goes

high at the end of the cycle. The data on the common I/O pins

DQ0-7 is written into memory if it is valid t

DVWH

 before the end

of a W controlled WRITE or t

DVEH

 before the end of an E

controlled WRITE.
It is recommended that G be kept high during the entire WRITE

cycle to avoid data bus contention on common I/O lines. If G is

left low, internal circuitry turns off the output buffers t

WLQZ

 after

W goes low.

AutoStore Operation

The STK17TA8 stores data to nvSRAM using one of three

storage operations. These three operations are Hardware Store

(activated by HSB), Software Store (activated by an address

sequence), and AutoStore (on power down).
AutoStore operation, a unique feature of Cypress QuanumTrap

technology is a standard feature on the STK17TA8.
During normal operation, the device draws current from V

CC

 to

charge a capacitor connected to the V

CAP

 pin. This stored

charge is used by the chip to perform a single STORE operation.

If the voltage on the V

CC

 pin drops below V

SWITCH

, the part

automatically disconnects the V

CAP

 pin from V

CC

. A STORE

operation is initiated with power provided by the V

CAP

 capacitor.

Figure 14

 shows the proper connection of the storage capacitor

(V

CAP

) for automatic store operation. Refer to the 

DC Electrical

Characteristics

 on page 3 for the size of the capacitor. The

voltage on the V

CAP

 pin is driven to 5V by a charge pump internal

to the chip. A pull up should be placed on W to hold it inactive

during power up.
To reduce unneeded nonvolatile stores, AutoStore and

Hardware Store operations are ignored unless at least one

WRITE operation has taken place since the most recent STORE

or RECALL cycle. Software initiated STORE cycles are

performed regardless of whether a WRITE operation has taken

place. The HSB signal can be monitored by the system to detect

an AutoStore cycle is in progress.

Hardware STORE (HSB) Operation

The STK17TA8 provides the HSB pin for controlling and

acknowledging the STORE operations. The HSB pin can be

used to request a hardware STORE cycle. When the HSB pin is

driven low, the STK17TA8 conditionally initiates a STORE

operation after t

DELAY

. An actual STORE cycle only begins if a

WRITE to the SRAM took place since the last STORE or

RECALL cycle. The HSB pin has a very resistive pullup and is

internally driven low to indicate a busy condition while the

STORE (initiated by any means) is in progress. This pin should

be externally pulled up if it is used to drive other inputs.
SRAM READ and WRITE operations that are in progress when

HSB is driven low by any means are given time to complete

before the STORE operation is initiated. After HSB goes low, the

STK17TA8 continues to allow SRAM operations for t

DELAY

.

During t

DELAY

, multiple SRAM READ operations may take place.

If a WRITE is in progress when HSB is pulled low, it is allowed a

time, t

DELAY

, to complete. However, any SRAM WRITE cycles

requested after HSB goes low is inhibited until HSB returns high.
If HSB is not used, it should be left unconnected.

Hardware RECALL (POWER-UP)

During power up or after any low power condition

(V

CC

<V

SWITCH

), an internal RECALL request is latched. When

V

CC

 once again exceeds the sense voltage of V

SWITCH

, a

RECALL cycle is automatically initiated and takes t

HRECALL

 to

complete.

Software STORE

Data can be transferred from the SRAM to the nonvolatile

memory by a software address sequence. The STK17TA8

software STORE cycle is initiated by executing sequential E

controlled or G controlled READ cycles from six specific address

locations in exact order. During the STORE cycle, previous data

is erased and then the new data is programmed into the nonvol-

 

V

CC

V

CA

P

10

k O

hm

0.

1

µ

F

V

CC

V

CAP

W

[+] Feedback 

Summary of Contents for AutoStore STK17TA8

Page 1: ...s a fast static RAM with a nonvolatile Quantum Trap storage element included with each memory cell The SRAM provides the fast access and cycle times ease of use and unlimited read and write endurance of a normal SRAM Data transfers automatically to the nonvolatile storage cells when power loss is detected the STORE operation On power up data is automatically restored to the SRAM the RECALL operati...

Page 2: ... asserting G high caused the DQ pins to tri state X1 Output Crystal Connection drives crystal on startup X2 Input Crystal Connection for 32 768 kHz crystal VRTCcap Power Supply Capacitor supplied backup RTC supply voltage Left unconnected if VRTCbat is used VRTCbat Power Supply Battery supplied backup RTC supply voltage Left unconnected if VRTCcap is used VCC Power Supply Power 3 0V 20 10 HSB I O ...

Page 3: ...t loading and cycle rate Values obtained without output loads ICC2 Average VCC Current during STORE 3 3 mA All Inputs Don t Care VCC max Average current for duration of STORE cycle tSTORE ICC3 Average VCC Current at tAVAV 200ns 3V 25 C Typical 10 10 mA W V CC 0 2V All Other Inputs Cycling at CMOS Levels Dependent on output loading and cycle rate Values obtained without output loads ICC4 Average VC...

Page 4: ... 6 2 7 3 6 V 3 0V 20 10 VCAP Storage Capacitance 17 57 17 57 μF Between VCAP pin and VSS 5V rated NVC Nonvolatile STORE operations 200 200 K DATAR Data Retention 20 20 Years At 55 C DC Electrical Characteristics continued VCC 2 7V 3 6V Symbol Parameter Commercial Industrial Units Notes Min Max Min Max Notes 2 These parameters are guaranteed but not tested Symbol Parameter Max Units Conditions CIN ...

Page 5: ... Battery Pin Voltage 1 8 3 3 1 8 3 3 V Typical 3 0 Volts during normal operation VRTCcap RTC Capacitor Pin Voltage 1 2 2 7 1 2 2 7 V Typical 2 4 Volts during normal operation tOSCS RTC Oscillator time to start 10 10 sec At MIN Temperature from Power up or Enable 5 5 sec At 25 C from Power up or Enable C 1 C 2 RF Y 1 X1 X2 Recommended Values Y1 32 768 KHz 10M Ohm 0 install cap footprint but leave u...

Page 6: ...e Access Time 25 45 ns 2 tAVAV 3 tELEH 3 tRC Read Cycle Time 25 45 ns 3 tAVQV 4 tAVQV 4 tAA Address Access Time 25 45 ns 4 tGLQV tOE Output Enable to Data Valid 12 20 ns 5 tAXQX 4 tAXQX 4 tOH Output Hold after Address Change 3 3 ns 6 tELQX tLZ Address Change or Chip Enable to Output Active 3 3 ns 7 tEHQZ 5 tHZ Address Change or Chip Disable to Output Inactive 10 15 ns 8 tGLQX tOLZ Output Enable to...

Page 7: ...0 30 ns 15 tDVWH tDVEH tDW Data Set up to End of Write 10 15 ns 16 tWHDX tEHDX tDH Data Hold after End of Write 0 0 ns 17 tAVWH tAVEH tAW Address Set up to End of Write 20 30 ns 18 tAVWL tAVEL tAS Address Set up to Start of Write 0 0 ns 19 tWHAX tEHAX tWR Address Hold after End of Write 0 0 ns 20 tWLQZ 5 7 tWZ Write Enable to Output Disable 10 15 ns 21 tWHQX tOW Output Active after End of Write 3 ...

Page 8: ... cycle no STORE will take place 11 Industrial Grade Devices require 15 ms MAX NO Symbols Parameter STK17TA8 Units Notes Standard Alternate Min Max 22 tHRECALL Power up RECALL Duration 40 ms 9 23 tSTORE tHLHZ STORE Cycle Duration 12 5 ms 10 11 24 VSWITCH Low Voltage Trigger Level 2 65 V 25 VCCRISE VCC Rise Time 150 μS NOTE Read and Write cycles will be ignored during STORE RECALL and while VCC is b...

Page 9: ...Max Min Max 26 tAVAV tAVAV tRC STORE RECALL Initiation Cycle Time 25 45 ns 13 27 tAVEL tAVGL tAS Address Set up Time 0 0 ns 28 tELEH tGLGH tCW Clock Pulse Width 20 30 ns 29 tEHAX tGHAX Address Hold Time 1 1 ns 30 tRECALL tRECALL RECALL Duration 100 100 μs 26 26 27 28 29 23 30 26 26 27 28 29 23 30 Notes 12 The software sequence is clocked on the falling edge of E controlled READs or G controlled RE...

Page 10: ...1 Notes 14 On a hardware STORE initiation SRAM operation continues to be enabled for time tDELAY to allow READ WRITE cycles to compete 15 This is the amount of time that it takes to take action on a soft sequence command Vcc power must remain high to effectively register command 16 Commands like Store and Recall lock out I O until operation is complete which further increases this time See specifi...

Page 11: ...0x08FC0 Nonvolatile Store Output High Z ICC2 L H L 0x04E38 0x0B1C7 0x083E0 0x07C1F 0x0703F 0x04C63 Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile Recall Output Data Output Data Output Data Output Data Output Data Output High Z Active 17 18 19 Notes 17 The six consecutive addresses must be in the order listed W must be high during all six consecutive cycles to enable a nonvolatile cy...

Page 12: ...p to perform a single STORE operation If the voltage on the VCC pin drops below VSWITCH the part automatically disconnects the VCAP pin from VCC A STORE operation is initiated with power provided by the VCAP capacitor Figure 14 shows the proper connection of the storage capacitor VCAP for automatic store operation Refer to the DC Electrical Characteristics on page 3 for the size of the capacitor T...

Page 13: ...he AutoStore function cannot be disabled on the STK17TA8 Best Practices nvSRAM products have been used effectively for over 15 years While ease of use is one of the product s main system values experience gained working with hundreds of applications has resulted in the following suggestions as best practices The nonvolatile cells in an nvSRAM are programmed on the test floor during final test and ...

Page 14: ... capacitor power source connect the capacitor to the VRTCcap pin and leave the VRTCbat pin unconnected Capacitor backup time values based on maximum current specs are shown below Nominal times are approximately three times longer A capacitor has the obvious advantage of being more reliable and not containing hazardous materials The capacitor is recharged every time the power is turned on so that r...

Page 15: ...ent real time clock register Using the match bits the alarm can occur as specifically as one particular second on one day of the month or as frequently as once per minute Note The product requires the match bit for seconds 1x1FFF2 D7 be set to 0 for proper operation of the Alarm Flag and Interrupt The alarm value should be initialized on power up by software since the alarm registers are not nonvo...

Page 16: ...wer monitor circuit When set to 0 only the PF flag is set High Low H L When set to a 1 the INT pin is active high and the driver mode is push pull The INT pin can drive high only when VCC VSWITCH When set to a 0 the INT pin is active low and the drive mode is open drain The active low open drain output is maintained even when power is lost Pulse Level P L When set to a 1 the INT pin is driven for ...

Page 17: ...s 00 99 0x1FFFE 0 0 0 10s Months Months Months 01 12 0x1FFFD 0 0 10s Day of Month Day of Month Day of Month 01 31 0x1FFFC 0 0 0 0 0 Day of Week Day of week 01 07 0x1FFFB 0 0 10s Hours Hours Hours 00 23 0x1FFFA 0 10s Minutes Minutes Minutes 00 59 0x1FFF9 0 10s Seconds Seconds Seconds 00 59 0x1FFF8 OSCEN 0 0 Cal Sign Calibration 00000 Calibration values 0x1FFF7 WDS WDW WDT Watchdog 0x1FFF6 WIE 0 AIE...

Page 18: ...r must assign meaning to the day value as the day is not integrated with the date 0x1FFFB Real Time Clock Hours D7 D6 D5 D4 D3 D2 D1 D0 0 0 10s Hours Hours Contains the BCD value of hours in 24 hour format Lower nibble contains the lower digit and operates from 0 to 9 upper nibble two bits contains the upper digit and operates from 0 to 2 The range for the register is 0 23 0x1FFFA Real Time Clock ...

Page 19: ...fects the AF flag PFIE Power Fail Enable When set to 1 a power failure drives the INT pin as well as setting the PF flag When set to 0 the power failure only sets the PF flag 0 Reserved For Future Used H L High Low When set to a 1 the INT pin is driven active high When set to 0 the INT pin is open drain active low P L Pulse Level When set to a 1 the INT pin is driven active determined by H L by an...

Page 20: ...register is read or on power up PF Power fail Flag This read only bit is set to 1 when power falls below the power fail threshold VSWITCH It is cleared to 0 when the Flags register is read or on power up OSCF Oscillator Fail Flag Set to 1 on power up only if the oscillator is enabled and not running in the first 5ms of operation This indicates that RTC backup power failed and clock value is no lon...

Page 21: ...erature STK17TA8 RF25 3V 128Kx8 AutoStore nvSRAM RTC SSOP48 300 25 Commercial STK17TA8 RF45 3V 128Kx8 AutoStore nvSRAM RTC SSOP48 300 45 Commercial STK17TA8 RF25TR 3V 128Kx8 AutoStore nvSRAM RTC SSOP48 300 25 Commercial STK17TA8 RF45TR 3V 128Kx8 AutoStore nvSRAM RTC SSOP48 300 45 Commercial STK17TA8 RF25I 3V 128Kx8 AutoStore nvSRAM RTC SSOP48 300 25 Industrial STK17TA8 RF45I 3V 128Kx8 AutoStore nv...

Page 22: ...STK17TA8 Document 001 52039 Rev Page 22 of 23 Package Diagrams Figure 17 48 Pin SSOP 51 85061 51 85061 C Feedback ...

Page 23: ...the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU...

Reviews: