background image

 

CY7C1460AV33
CY7C1462AV33
CY7C1464AV33

Document #: 38-05353 Rev. *D

Page 10 of 27

IEEE 1149.1 Serial Boundary Scan (JTAG)

The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 incor-
porates a serial boundary scan test access port (TAP). This
part is fully compliant with 1149.1. The TAP operates using
JEDEC-standard 3.3V or 2.5V I/O logic level.

The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33
contains a TAP controller, instruction register, boundary scan
register, bypass register, and ID register.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(V

SS

) to prevent clocking of the device. TDI and TMS are inter-

nally pulled up and may be unconnected. They may alternately
be connected to V

DD 

through a pull-up resistor. TDO should be

left unconnected. Upon power-up, the device will come up in
a reset state which will not interfere with the operation of the
device.

TAP Controller State Diagram

The 0/1 next to each state represents the value of TMS at the
rising edge of TCK.

Test Access Port (TAP)

Test Clock (TCK)

The test clock is used only with the TAP controller. All inputs
are captured on the rising edge of TCK. All outputs are driven
from the falling edge of TCK.

Test MODE SELECT (TMS)

The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. It is allowable to
leave this ball unconnected if the TAP is not used. The ball is
pulled up internally, resulting in a logic HIGH level.

Test Data-In (TDI)

The TDI ball is used to serially input information into the
registers and can be connected to the input of any of the
registers. The register between TDI and TDO is chosen by the
instruction that is loaded into the TAP instruction register. TDI
is internally pulled up and can be unconnected if the TAP is
unused in an application. TDI is connected to the most signif-
icant bit (MSB) of any register. (See Tap Controller Block
Diagram.)

Test Data-Out (TDO)

The TDO output ball is used to serially clock data-out from the
registers. The output is active depending upon the current
state of the TAP state machine. The output changes on the
falling edge of TCK. TDO is connected to the least significant
bit (LSB) of any register. (See Tap Controller State Diagram.)

TAP Controller Block Diagram

Performing a TAP Reset

A RESET is performed by forcing TMS HIGH (VDD) for five
rising edges of TCK. This RESET does not affect the operation
of the SRAM and may be performed while the SRAM is
operating.

At power-up, the TAP is reset internally to ensure that TDO
comes up in a High-Z state.

TAP Registers

Registers are connected between the TDI and TDO balls and
allow data to be scanned into and out of the SRAM test
circuitry. Only one register can be selected at a time through
the instruction register. Data is serially loaded into the TDI ball
on the rising edge of TCK. Data is output on the TDO ball on
the falling edge of TCK.

Instruction Register

Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the
TDI and TDO balls as shown in the Tap Controller Block
Diagram. Upon power-up, the instruction register is loaded
with the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as
described in the previous section.

TEST-LOGIC

RESET

RUN-TEST/

IDLE

SELECT

DR-SCAN

SELECT

IR-SCAN

CAPTURE-DR

SHIFT-DR

CAPTURE-IR

SHIFT-IR

EXIT1-DR

PAUSE-DR

EXIT1-IR

PAUSE-IR

EXIT2-DR

UPDATE-DR

EXIT2-IR

UPDATE-IR

1

1

1

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

1

0

1

1

0

1

0

1

1

1

1

0

Bypass Register

0

Instruction Register

0

1

2

Identification Register

0

1

2

29

30

31

.

.

.

Boundary Scan Register

0

1

2

.

.

x

.

.

.

    S

election

    Circuitr

y

Selection

Circuitry

TCK

TMS

TAP CONTROLLER

TDI

TDO

[+] Feedback 

Summary of Contents for CY7C1460AV33

Page 1: ...required to enable consecutive Read Write operations with data being trans ferred on every clock cycle This feature dramatically improves the throughput of data in systems that require frequent Write...

Page 2: ...am CY7C1462AV33 2M x 18 A0 A1 A C MODE CE1 CE2 CE3 OE READ LOGIC DQs DQPa DQPb DQPc DQPd DQPe DQPf DQPg DQPh D A T A S T E E R I N G O U T P U T B U F F E R S MEMORY ARRAY E E INPUT REGISTER0 ADDRESS...

Page 3: ...1460AV33 100 pin TQFP Pinout A A A A A 1 A 0 V SS V DD A A A A A A A NC NC VDDQ VSS NC DQPa DQa DQa VSS VDDQ DQa DQa VSS NC VDD DQa DQa VDDQ VSS DQa DQa NC NC VSS VDDQ NC NC NC NC NC NC VDDQ VSS NC NC...

Page 4: ...VDD NC VDD DQa VDD VDDQ DQa VDDQ VDD VDD VDDQ VDD VDDQ DQa VDDQ A A VSS A A A DQb DQb DQb ZZ DQa DQa DQPa DQa A VDDQ A 2 3 4 5 6 7 1 A B C D E F G H J K L M N P R TDO NC 576M NC 1G NC NC DQPb NC DQb...

Page 5: ...er is advanced When LOW a new address can be loaded into the device for an access After being deselected ADV LD should be driven LOW in order to load a new address Pin Configurations continued A B C D...

Page 6: ...g the data portion of a write sequence during the first clock when emerging from a deselected state and when the device is deselected regardless of the state of OE DQPa DQPb DQPc DQPd DQPe DQPf DQPg D...

Page 7: ...h burst counters use A0 and A1 in the burst sequence and will wrap around when incre mented sufficiently A HIGH input on ADV LD will increment the internal burst counter regardless of the state of chi...

Page 8: ...ZZS Device operation to ZZ ZZ VDD 0 2V 2tCYC ns tZZREC ZZ recovery time ZZ 0 2V 2tCYC ns tZZI ZZ active to sleep current This parameter is sampled 2tCYC ns tRZZI ZZ Inactive to exit sleep current This...

Page 9: ...e Byte b DQb and DQPb L H H L H Write Bytes b a L H H L L Write Byte c DQc and DQPc L H L H H Write Bytes c a L H L H L Write Bytes c b L H LL L H Write Bytes c b a L H L L L Write Byte d DQd and DQPd...

Page 10: ...e unconnected if the TAP is unused in an application TDI is connected to the most signif icant bit MSB of any register See Tap Controller Block Diagram Test Data Out TDO The TDO output ball is used to...

Page 11: ...p or whenever the TAP controller is given a test logic reset state SAMPLE Z The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP control...

Page 12: ...e TAP controller is in the Test Logic Reset state Reserved These instructions are not implemented but are reserved for future use Do not use these instructions TAP Timing TAP AC Switching Characterist...

Page 13: ...V VDDQ 2 5V 2 1 V VOL1 Output LOW Voltage IOL 8 0 mA VDDQ 3 3V 0 4 V IOL 1 0 mA VDDQ 2 5V 0 4 V VOL2 Output LOW Voltage IOL 100 A VDDQ 3 3V 0 2 V VDDQ 2 5V 0 2 V VIH Input HIGH Voltage VDDQ 3 3V 2 0...

Page 14: ...the vendor ID code and places the register between TDI and TDO This operation does not affect SRAM operations SAMPLE Z 010 Captures I O ring contents Places the boundary scan register between TDI and...

Page 15: ...5 P8 30 E10 55 B1 80 R2 6 R8 31 D10 56 A1 81 P3 7 R9 32 C11 57 C1 82 R3 8 P9 33 A11 58 D1 83 P2 9 P10 34 B11 59 E1 84 R4 10 R10 35 A10 60 F1 85 P4 11 R11 36 B10 61 G1 86 N5 12 H11 37 A9 62 D2 87 P6 13...

Page 16: ...12 U9 47 10F 82 4B 117 1P 13 P6 48 10E 83 3C 118 2R 14 W11 49 11E 84 3B 119 1R 15 W10 50 11D 85 3A 120 2T 16 V11 51 10D 86 2A 121 1T 17 V10 52 11C 87 1A 122 2U 18 U11 53 10C 88 2B 123 1U 19 U10 54 11...

Page 17: ...or 2 5V I O IOL 1 0 mA 0 4 V VIH Input HIGH Voltage 15 for 3 3V I O 2 0 VDD 0 3V V for 2 5V I O 1 7 VDD 0 3V V VIL Input LOW Voltage 15 for 3 3V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 V IX Input Leakage C...

Page 18: ...scription Test Conditions 100 TQFP Package 165 FBGA Package 209 FBGA Package Unit JA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring th...

Page 19: ...ip Select Set up 1 2 1 4 1 5 ns Hold Times tAH Address Hold After CLK Rise 0 3 0 4 0 5 ns tDH Data Input Hold After CLK Rise 0 3 0 4 0 5 ns tCENH CEN Hold After CLK Rise 0 3 0 4 0 5 ns tWEH WE BWx Hol...

Page 20: ...the Burst sequence is determined by the status of the MODE 0 Linear 1 Interleaved Burst operations are optional WRITE D A1 1 2 3 4 5 6 7 8 9 CLK t CYC tCL tCH 10 CE tCEH tCES WE CEN tCENH tCENS BWx AD...

Page 21: ...ditions to deselect the device 29 I Os are in High Z when exiting ZZ sleep mode NOP STALL and DESELECT Cycles 24 25 27 ZZ Mode Timing 28 29 Switching Waveforms continued READ Q A3 4 5 6 7 8 9 10 CLK C...

Page 22: ...0AV33 167BZXI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Lead Free CY7C1462AV33 167BZXI CY7C1464AV33 167BGI 51 85167 209 ball Fine Pitch Ball Grid Array 14 22 1 76 mm CY7C1464AV33 1...

Page 23: ...Y7C1460AV33 250AXI 51 85050 100 Pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free Industrial CY7C1462AV33 250AXI CY7C1460AV33 250BZI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm CY7C...

Page 24: ...SIDE 3 DIMENSIONS IN MILLIMETERS BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 0 30 0 08 0 65 20 00 0 10 22 00 0 20 1 40 0 05 12 1 1 60 MAX 0 05 MIN 0 60 0 15 0 MIN 0 25 0...

Page 25: ...00 1 00 0 45 0 05 165X 0 25 M C A B 0 05 M C B A 0 15 4X 0 35 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11...

Page 26: ...n express written agreement with Cypress Furthermore Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be exp...

Page 27: ...o 1 5 ns for 200 MHz Speed Bin Added lead free information for 100 pin TQFP and 165 FBGA and 209 BGA packages B 331778 See ECN SYT Modified Address Expansion balls in the pinouts for 165 FBGA and 209...

Reviews: