background image

 

CY7C1460AV33
CY7C1462AV33
CY7C1464AV33

Document #: 38-05353 Rev. *D

Page 7 of 27

Functional Overview

The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are
synchronous-pipelined Burst NoBL SRAMs designed specifi-
cally to eliminate wait states during Write/Read transitions. All
synchronous inputs pass through input registers controlled by
the rising edge of the clock. The clock signal is qualified with
the Clock Enable input signal (CEN). If CEN is HIGH, the clock
signal is not recognized and all internal states are maintained.
All synchronous operations are qualified with CEN. All data
outputs pass through output registers controlled by the rising
edge of the clock. Maximum access delay from the clock rise
(t

CO

) is 2.6 ns (250-MHz device).

Accesses can be initiated by asserting all three Chip Enables
(CE

1

, CE

2

, CE

3

) active at the rising edge of the clock. If Clock

Enable (CEN) is active LOW and ADV/LD is asserted LOW,
the address presented to the device will be latched. The
access can either be a read or write operation, depending on
the status of the Write Enable (WE). BW

[x]

 can be used to

conduct byte write operations. 

Write operations are qualified by the Write Enable (WE). All
writes are simplified with on-chip synchronous self-timed write
circuitry. 

Three synchronous Chip Enables (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) simplify depth expansion.
All operations (Reads, Writes, and Deselects) are pipelined.
ADV/LD should be driven LOW once the device has been
deselected in order to load a new address for the next
operation.

Single Read Accesses

A read access is initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE

1

, CE

2

,

and CE

are ALL asserted active, (3) the Write Enable input

signal WE is deasserted HIGH, and (4) ADV/LD is asserted
LOW. The address presented to the address inputs is latched
into the Address Register and presented to the memory core
and control logic. The control logic determines that a read
access is in progress and allows the requested data to
propagate to the input of the output register. At the rising edge
of the next clock the requested data is allowed to propagate
through the output register and onto the data bus within 2.6 ns
(250-MHz device) provided OE is active LOW. After the first
clock of the read access the output buffers are controlled by
OE and the internal control logic. OE must be driven LOW in
order for the device to drive out the requested data. During the
second clock, a subsequent operation (Read/Write/Deselect)
can be initiated. Deselecting the device is also pipelined.
Therefore, when the SRAM is deselected at clock rise by one
of the chip enable signals, its output will tri-state following the
next clock rise.

Burst Read Accesses

The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 have
an on-chip burst counter that allows the user the ability to
supply a single address and conduct up to four Reads without
reasserting the address inputs. ADV/LD must be driven LOW
in order to load a new address into the SRAM, as described in
the Single Read Access section above. The sequence of the
burst counter is determined by the MODE input signal. A LOW
input on MODE selects a linear burst mode, a HIGH selects an
interleaved burst sequence. Both burst counters use A0 and
A1 in the burst sequence, and will wrap-around when incre-
mented sufficiently. A HIGH input on ADV/LD will increment

the internal burst counter regardless of the state of chip
enables inputs or WE. WE is latched at the beginning of a burst
cycle. Therefore, the type of access (Read or Write) is
maintained throughout the burst sequence.

Single Write Accesses

Write access are initiated when the following conditions are
satisfied at clock rise:   (1) CEN is asserted LOW, (2) CE

1

, CE

2

,

and CE

are ALL asserted active, and (3) the write signal WE

is asserted LOW. The address presented to the address inputs
is loaded into the Address Register. The write signals are
latched into the Control Logic block. 

On the subsequent clock rise the data lines are automatically
tri-stated regardless of the state of the OE input signal. This
allows the external logic to present the data on DQ

 

and DQP

(DQ

a,b,c,d,e,f,g,h

/DQP

a,b,c,d,e,f,g,h

 for CY7C1464AV33,

DQ

a,b,c,d

/DQP

a,b,c,d

 for CY7C1460AV33 and DQ

a,b

/DQP

a,b

for CY7C1462AV33). In addition, the address for the subse-
quent access (Read/Write/Deselect) is latched into the
Address Register (provided the appropriate control signals are
asserted).

On the next clock rise the data presented to DQ

 

and DQP

(DQ

a,b,c,d,e,f,g,h

/DQP

a,b,c,d,e,f,g,h

 for CY7C1464AV33,

DQ

a,b,c,d

/DQP

a,b,c,d

 for CY7C1460AV33 & DQ

a,b

/DQP

a,b

 for

CY7C1462AV33) (or a subset for byte write operations, see
Write Cycle Description table for details) inputs is latched into
the device and the write is complete. 

The data written during the Write operation is controlled by BW
(BW

a,b,c,d,e,f,g,h

 for CY7C1464AV33, BW

a,b,c,d

 for

CY7C1460AV33 and BW

a,b

 for CY7C1462AV33) signals. The

CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 provides
byte write capability that is described in the Write Cycle
Description table. Asserting the Write Enable input (WE) with
the selected Byte Write Select (BW) input will selectively write
to only the desired bytes. Bytes not selected during a byte
write operation will remain unaltered. A synchronous
self-timed write mechanism has been provided to simplify the
write operations. Byte write capability has been included in
order to greatly simplify Read/Modify/Write sequences, which
can be reduced to simple byte write operations. 

Because the
CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are
common I/O devices, data should not be driven into the device
while the outputs are active. The Output Enable (OE) can be
deasserted HIGH before presenting data to the DQ

 

and DQP

(DQ

a,b,c,d,e,f,g,h

/DQP

a,b,c,d,e,f,g,h

 for CY7C1464AV33,

DQ

a,b,c,d

/DQP

a,b,c,d

 for CY7C1460AV33 and DQ

a,b

/DQP

a,b

for CY7C1462AV33) inputs. Doing so will tri-state the output
drivers. As a safety precaution, DQ

 

and DQP

(DQ

a,b,c,d,e,f,g,h

/DQP

a,b,c,d,e,f,g,h

 for CY7C1464AV33,

DQ

a,b,c,d

/DQP

a,b,c,d

 for CY7C1460AV33 and DQ

a,b

/DQP

a,b

for CY7C1462AV33) are automatically tri-stated during the
data portion of a write cycle, regardless of the state of OE. 

Burst Write Accesses

The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 has
an on-chip burst counter that allows the user the ability to
supply a single address and conduct up to four WRITE opera-
tions without reasserting the address inputs. ADV/LD must be
driven LOW in order to load the initial address, as described
in the Single Write Access section above. When ADV/LD is
driven HIGH on the subsequent clock rise, the chip enables
(CE

1

, CE

2

, and CE

3

) and WE inputs are ignored and the burst

[+] Feedback 

Summary of Contents for CY7C1460AV33

Page 1: ...required to enable consecutive Read Write operations with data being trans ferred on every clock cycle This feature dramatically improves the throughput of data in systems that require frequent Write...

Page 2: ...am CY7C1462AV33 2M x 18 A0 A1 A C MODE CE1 CE2 CE3 OE READ LOGIC DQs DQPa DQPb DQPc DQPd DQPe DQPf DQPg DQPh D A T A S T E E R I N G O U T P U T B U F F E R S MEMORY ARRAY E E INPUT REGISTER0 ADDRESS...

Page 3: ...1460AV33 100 pin TQFP Pinout A A A A A 1 A 0 V SS V DD A A A A A A A NC NC VDDQ VSS NC DQPa DQa DQa VSS VDDQ DQa DQa VSS NC VDD DQa DQa VDDQ VSS DQa DQa NC NC VSS VDDQ NC NC NC NC NC NC VDDQ VSS NC NC...

Page 4: ...VDD NC VDD DQa VDD VDDQ DQa VDDQ VDD VDD VDDQ VDD VDDQ DQa VDDQ A A VSS A A A DQb DQb DQb ZZ DQa DQa DQPa DQa A VDDQ A 2 3 4 5 6 7 1 A B C D E F G H J K L M N P R TDO NC 576M NC 1G NC NC DQPb NC DQb...

Page 5: ...er is advanced When LOW a new address can be loaded into the device for an access After being deselected ADV LD should be driven LOW in order to load a new address Pin Configurations continued A B C D...

Page 6: ...g the data portion of a write sequence during the first clock when emerging from a deselected state and when the device is deselected regardless of the state of OE DQPa DQPb DQPc DQPd DQPe DQPf DQPg D...

Page 7: ...h burst counters use A0 and A1 in the burst sequence and will wrap around when incre mented sufficiently A HIGH input on ADV LD will increment the internal burst counter regardless of the state of chi...

Page 8: ...ZZS Device operation to ZZ ZZ VDD 0 2V 2tCYC ns tZZREC ZZ recovery time ZZ 0 2V 2tCYC ns tZZI ZZ active to sleep current This parameter is sampled 2tCYC ns tRZZI ZZ Inactive to exit sleep current This...

Page 9: ...e Byte b DQb and DQPb L H H L H Write Bytes b a L H H L L Write Byte c DQc and DQPc L H L H H Write Bytes c a L H L H L Write Bytes c b L H LL L H Write Bytes c b a L H L L L Write Byte d DQd and DQPd...

Page 10: ...e unconnected if the TAP is unused in an application TDI is connected to the most signif icant bit MSB of any register See Tap Controller Block Diagram Test Data Out TDO The TDO output ball is used to...

Page 11: ...p or whenever the TAP controller is given a test logic reset state SAMPLE Z The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP control...

Page 12: ...e TAP controller is in the Test Logic Reset state Reserved These instructions are not implemented but are reserved for future use Do not use these instructions TAP Timing TAP AC Switching Characterist...

Page 13: ...V VDDQ 2 5V 2 1 V VOL1 Output LOW Voltage IOL 8 0 mA VDDQ 3 3V 0 4 V IOL 1 0 mA VDDQ 2 5V 0 4 V VOL2 Output LOW Voltage IOL 100 A VDDQ 3 3V 0 2 V VDDQ 2 5V 0 2 V VIH Input HIGH Voltage VDDQ 3 3V 2 0...

Page 14: ...the vendor ID code and places the register between TDI and TDO This operation does not affect SRAM operations SAMPLE Z 010 Captures I O ring contents Places the boundary scan register between TDI and...

Page 15: ...5 P8 30 E10 55 B1 80 R2 6 R8 31 D10 56 A1 81 P3 7 R9 32 C11 57 C1 82 R3 8 P9 33 A11 58 D1 83 P2 9 P10 34 B11 59 E1 84 R4 10 R10 35 A10 60 F1 85 P4 11 R11 36 B10 61 G1 86 N5 12 H11 37 A9 62 D2 87 P6 13...

Page 16: ...12 U9 47 10F 82 4B 117 1P 13 P6 48 10E 83 3C 118 2R 14 W11 49 11E 84 3B 119 1R 15 W10 50 11D 85 3A 120 2T 16 V11 51 10D 86 2A 121 1T 17 V10 52 11C 87 1A 122 2U 18 U11 53 10C 88 2B 123 1U 19 U10 54 11...

Page 17: ...or 2 5V I O IOL 1 0 mA 0 4 V VIH Input HIGH Voltage 15 for 3 3V I O 2 0 VDD 0 3V V for 2 5V I O 1 7 VDD 0 3V V VIL Input LOW Voltage 15 for 3 3V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 V IX Input Leakage C...

Page 18: ...scription Test Conditions 100 TQFP Package 165 FBGA Package 209 FBGA Package Unit JA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring th...

Page 19: ...ip Select Set up 1 2 1 4 1 5 ns Hold Times tAH Address Hold After CLK Rise 0 3 0 4 0 5 ns tDH Data Input Hold After CLK Rise 0 3 0 4 0 5 ns tCENH CEN Hold After CLK Rise 0 3 0 4 0 5 ns tWEH WE BWx Hol...

Page 20: ...the Burst sequence is determined by the status of the MODE 0 Linear 1 Interleaved Burst operations are optional WRITE D A1 1 2 3 4 5 6 7 8 9 CLK t CYC tCL tCH 10 CE tCEH tCES WE CEN tCENH tCENS BWx AD...

Page 21: ...ditions to deselect the device 29 I Os are in High Z when exiting ZZ sleep mode NOP STALL and DESELECT Cycles 24 25 27 ZZ Mode Timing 28 29 Switching Waveforms continued READ Q A3 4 5 6 7 8 9 10 CLK C...

Page 22: ...0AV33 167BZXI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Lead Free CY7C1462AV33 167BZXI CY7C1464AV33 167BGI 51 85167 209 ball Fine Pitch Ball Grid Array 14 22 1 76 mm CY7C1464AV33 1...

Page 23: ...Y7C1460AV33 250AXI 51 85050 100 Pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free Industrial CY7C1462AV33 250AXI CY7C1460AV33 250BZI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm CY7C...

Page 24: ...SIDE 3 DIMENSIONS IN MILLIMETERS BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 0 30 0 08 0 65 20 00 0 10 22 00 0 20 1 40 0 05 12 1 1 60 MAX 0 05 MIN 0 60 0 15 0 MIN 0 25 0...

Page 25: ...00 1 00 0 45 0 05 165X 0 25 M C A B 0 05 M C B A 0 15 4X 0 35 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11...

Page 26: ...n express written agreement with Cypress Furthermore Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be exp...

Page 27: ...o 1 5 ns for 200 MHz Speed Bin Added lead free information for 100 pin TQFP and 165 FBGA and 209 BGA packages B 331778 See ECN SYT Modified Address Expansion balls in the pinouts for 165 FBGA and 209...

Reviews: