background image

CY7C1386D, CY7C1386F

CY7C1387D, CY7C1387F

Document Number: 38-05545 Rev. *E

Page 12 of 30

When the TAP controller is in the Capture-IR state, the two

least significant bits are loaded with a binary ‘01’ pattern to

allow for fault isolation of the board-level serial test data path.

Bypass Register

To save time when serially shifting data through registers, it is

sometimes advantageous to skip certain chips. The bypass

register is a single-bit register that can be placed between the

TDI and TDO balls. This allows data to be shifted through the

SRAM with minimal delay. The bypass register is set LOW

(V

SS

) when the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all the input and

bidirectional balls on the SRAM. 
The boundary scan register is loaded with the contents of the

RAM input and output ring when the TAP controller is in the

Capture-DR state and is then placed between the TDI and

TDO balls when the controller is moved to the Shift-DR state.

The EXTEST, SAMPLE/PRELOAD, and SAMPLE Z

instructions can be used to capture the contents of the input

and output ring.
The boundary scan order tables show the order in which the

bits are connected. Each bit corresponds to one of the bumps

on the SRAM package. The MSB of the register is connected

to TDI, and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor specific 32-bit code

during the Capture-DR state when the IDCODE command is

loaded in the instruction register. The IDCODE is hardwired

into the SRAM and can be shifted out when the TAP controller

is in the Shift-DR state. The ID register has a vendor code and

other information described in the 

Identification Register

Definitions on page 15

.

TAP Instruction Set

Overview

Eight different instructions are possible with the three bit

instruction register. All combinations are listed in 

Identification

Codes on page 15

. Three of these instructions are listed as

RESERVED and must not be used. The other five instructions

are described in detail below.
Instructions are loaded into the TAP controller during the

Shift-IR state when the instruction register is placed between

TDI and TDO. During this state, instructions are shifted

through the instruction register through the TDI and TDO balls.

To execute the instruction once it is shifted in, the TAP

controller needs to be moved into the Update-IR state.

EXTEST

The EXTEST instruction enables the preloaded data to be

driven out through the system output pins. This instruction also

selects the boundary scan register to be connected for serial

access between the TDI and TDO in the Shift-DR controller

state.

IDCODE

The IDCODE instruction causes a vendor specific 32-bit code

to be loaded into the instruction register. It also places the

instruction register between the TDI and TDO balls and allows

the IDCODE to be shifted out of the device when the TAP

controller enters the Shift-DR state.
The IDCODE instruction is loaded into the instruction register

upon power up or whenever the TAP controller is given a test

logic reset state.

SAMPLE Z

The SAMPLE Z instruction causes the boundary scan register

to be connected between the TDI and TDO balls when the TAP

controller is in a Shift-DR state. The SAMPLE Z command

places all SRAM outputs into a High-Z state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When

the SAMPLE/PRELOAD instructions are loaded into the

instruction register and the TAP controller is in the Capture-DR

state, a snapshot of data on the input and output pins is

captured in the boundary scan register. 
The user must be aware that the TAP controller clock can only

operate at a frequency up to 20 MHz, while the SRAM clock

operates more than an order of magnitude faster. As there is

a large difference in the clock frequencies, it is possible that

during the Capture-DR state, an input or output will undergo a

transition. The TAP may then try to capture a signal while in

transition (metastable state). This will not harm the device, but

there is no guarantee as to the value that will be captured.

Repeatable results may not be possible.
To guarantee that the boundary scan register will capture the

correct value of a signal, the SRAM signal must be stabilized

long enough to meet the TAP controller's capture setup plus

hold times (t

CS

 and t

CH

). The SRAM clock input might not be

captured correctly if there is no way in a design to stop (or

slow) the clock during a SAMPLE/PRELOAD instruction. If this

is an issue, it is still possible to capture all other signals and

simply ignore the value of the CK and CK captured in the

boundary scan register.
Once the data is captured, it is possible to shift out the data by

putting the TAP into the Shift-DR state. This places the

boundary scan register between the TDI and TDO pins.
PRELOAD allows an initial data pattern to be placed at the

latched parallel outputs of the boundary scan register cells

prior to the selection of another boundary scan test operation.
The shifting of data for the SAMPLE and PRELOAD phases

can occur concurrently when required; that is, while data

captured is shifted out, the preloaded data can be shifted in.

BYPASS

When the BYPASS instruction is loaded in the instruction

register and the TAP is placed in a Shift-DR state, the bypass

register is placed between the TDI and TDO balls. The

advantage of the BYPASS instruction is that it shortens the

boundary scan path when multiple devices are connected

together on a board.

EXTEST Output Bus Tri-State

IEEE Standard 1149.1 mandates that the TAP controller be

able to put the output bus into a tri-state mode. 
The boundary scan register has a special bit located at bit #85

(for 119-BGA package) or bit #89 (for 165-FBGA package).

When this scan cell, called the “extest output bus tri-state,” is

latched into the preload register during the Update-DR state in

[+] Feedback 

Summary of Contents for CY7C1386D

Page 1: ...ning chip enable CE1 depth expansion chip enables CE2 and CE3 2 burst control inputs ADSC ADSP and ADV write enables BWX and BWE and global write GW Asynchronous inputs include the output enable OE an...

Page 2: ...BLE OUTPUT REGISTERS SENSE AMPS MEMORY ARRAY OUTPUT BUFFERS DQA DQP A BYTE WRITE DRIVER DQB DQP B BYTE WRITE DRIVER DQc DQP C BYTE WRITE DRIVER DQD DQP D BYTE WRITE DRIVER INPUT REGISTERS A0 A1 A A 1...

Page 3: ...67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 MODE CY7C1386D 512K X 36 NC A A A A A 1 A 0 NC 72M NC 36M V SS V DD A A A A A A A A A N...

Page 4: ...DQD DQD DQD DQD ADSC NC CE1 OE ADV GW VSS VSS VSS VSS VSS VSS VSS VSS DQPA MODE DQPD DQPB BWB BWC NC VDD NC BWA NC BWE BWD ZZ 2 3 4 5 6 7 1 A B C D E F G H J K L M N P R T U VDDQ NC 288M NC 144M NC DQ...

Page 5: ...DQB DQB DQB NC DQB NC DQA DQA VDD VDDQ VDD VDDQ DQB VDD NC VDD DQA VDD VDDQ DQA VDDQ VDD VDD VDDQ VDD VDDQ DQA VDDQ A A VSS A A A DQB DQB DQB ZZ DQA DQA DQPA DQA A VDDQ A CY7C1387D 1M x 18 A0 A VSS 2...

Page 6: ...ocument for BGA CE3 is sampled only when a new external address is loaded OE Input Asynchronous Output enable asynchronous input active LOW Controls the direction of the IO pins When LOW the IO pins b...

Page 7: ...ion occurs when the SRAM is emerging from a deselected state to a selected state its outputs are always tri stated during the first cycle of the access After the first cycle of the access the outputs...

Page 8: ...synchronous self timed write mechanism has been provided to simplify the write operations The CY7C1386D CY7C1387D CY7C1386F CY7C1387F is a common IO device the output enable OE must be deasserted HIGH...

Page 9: ...ite Cycle Continue Burst Next H X X L X H L L X L H D Read Cycle Suspend Burst Current X X X L H H H H L L H Q Read Cycle Suspend Burst Current X X X L H H H H H L H Tri State Read Cycle Suspend Burst...

Page 10: ...nd DQPD H L L H H H Write Bytes D A H L L H H L Write Bytes D B H L L H L H Write Bytes D B A H L L H L L Write Bytes D C H L L L H H Write Bytes D C A H L L L H L Write Bytes D C B H L L L L H Write...

Page 11: ...nconnected if the TAP is unused in an application TDI is connected to the most signif icant bit MSB of any register See TAP Controller Block Diagram Test Data Out TDO The TDO output ball is used to se...

Page 12: ...ls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift DR state The IDCODE instruction is loaded into the instruction register upon power up or whenever the...

Page 13: ...hese instructions are not implemented but are reserved for future use Do not use these instructions TAP Timing TAP AC Switching Characteristics Over the Operating Range 10 11 Parameter Description Min...

Page 14: ...quivalent TDO 1 5V 20pF Z 50 O 50 TDO 1 25V 20pF Z 50 O 50 TAP DC Electrical Characteristics And Operating Conditions 0 C TA 70 C VDD 3 3V 0 165V unless otherwise noted 12 Parameter Description Test C...

Page 15: ...5 85 Boundary Scan Order 165 ball FBGA package 89 89 Identification Codes Instruction Code Description EXTEST 000 Captures IO ring contents Places the boundary scan register between TDI and TDO Forces...

Page 16: ...K1 6 L5 28 E6 50 B3 72 L2 7 R6 29 D6 51 A3 73 N2 8 U6 30 C7 52 C2 74 P2 9 R7 31 B7 53 A2 75 R3 10 T7 32 C6 54 B1 76 T1 11 P6 33 A6 55 C1 77 R1 12 N7 34 C5 56 D2 78 T2 13 M6 35 B5 57 E1 79 L3 14 L7 36...

Page 17: ...67 H3 8 P9 38 B9 68 J1 9 P10 39 C10 69 K1 10 R10 40 A8 70 L1 11 R11 41 B8 71 M1 12 H11 42 A7 72 J2 13 N11 43 B7 73 K2 14 M11 44 B6 74 L2 15 L11 45 A6 75 M2 16 K11 46 B5 76 N1 17 J11 47 A5 77 N2 18 M1...

Page 18: ...r 3 3V IO 2 0 VDD 0 3V V for 2 5V IO 1 7 VDD 0 3V V VIL Input LOW Voltage 17 for 3 3V IO 0 3 0 8 V for 2 5V IO 0 3 0 7 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input Current of...

Page 19: ...Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 28 66 23 8 20 7 C W JC Thermal Resistance Junction to Cas...

Page 20: ...5 ns Hold Times tAH Address Hold After CLK Rise 0 3 0 4 0 5 ns tADH ADSP ADSC Hold After CLK Rise 0 3 0 4 0 5 ns tADVH ADV Hold After CLK Rise 0 3 0 4 0 5 ns tWEH GW BWE BWX Hold After CLK Rise 0 3 0...

Page 21: ...h Z tDOH tCO ADV tOEHZ tCO SingleREAD BURSTREAD tOEV tOELZ tCHZ Burstwrapsaround toitsinitialstate tADVH tADVS tWEH tWES tADH tADS Q A2 Q A2 1 Q A2 2 Q A1 Q A2 Q A2 1 Q A3 Q A2 3 A2 A3 Deselect cycle...

Page 22: ...ST READ BURST WRITE D A2 D A2 1 D A3 D A3 1 D A2 3 A2 A3 Extended BURST WRITE Single WRITE tADH tADS tADH tADS t OEHZ tADVH tADVS tWEH tWES t DH t DS GW tWEH tWES Byte write signals are ignored for rs...

Page 23: ...SC CE tAH tAS A2 tCEH tCES Data Out Q High Z ADV Single WRITE D A3 A4 A5 A6 D A5 D A6 Data In D BURST READ Back to Back READs High Z Q A2 Q A1 Q A4 tWEH tWES Q A4 3 tOEHZ tDH tDS tOELZ tCLZ tCO Back t...

Page 24: ...nued t ZZ I SUPPLY CLK ZZ t ZZREC ALL INPUTS except ZZ DON T CARE I DDZZ t ZZI tRZZI Outputs Q High Z DESELECT or READ Only Notes 30 Device must be deselected when entering ZZ sleep mode See cycle des...

Page 25: ...119 ball Ball Grid Array 14 x 22 x 2 4 mm Pb Free CY7C1387F 167BGXI CY7C1386D 167BZI 51 85180 165 ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm CY7C1387D 167BZI CY7C1386D 167BZXI 51 85180 165 ball...

Page 26: ...3 x 15 x 1 4 mm Pb Free CY7C1387D 250BZXC CY7C1386D 250AXI 51 85050 100 pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Pb Free Industrial CY7C1387D 250AXI CY7C1386F 250BGI 51 85115 119 ball Ball Grid Array...

Page 27: ...PROTRUSION END FLASH SHALL NOT EXCEED 0 0098 in 0 25 mm PER SIDE 3 DIMENSIONS IN MILLIMETERS BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 0 30 0 08 0 65 20 00 0 10 22 00 0...

Page 28: ...CY7C1386D CY7C1386F CY7C1387D CY7C1387F Document Number 38 05545 Rev E Page 28 of 30 Figure 2 119 Ball BGA 14 x 22 x 2 4 mm 51 85115 Package Diagrams continued 51 85115 B Feedback...

Page 29: ...is a trademark of Intel Corporation PowerPC is a trademark of IBM Corporation All product and company names mentioned in this document are the trademarks of their respective holders Figure 3 165 Ball...

Page 30: ...nd JC for BGA Package from 45 and 7 C W to 23 8 and 6 2 C W respectively Changed JA and JC for FBGA Package from 46 and 3 C W to 20 7 and 4 0 C W respectively Modified VOL VOH test conditions Removed...

Reviews: