background image

 

CY7C1361C
CY7C1363C

Document #: 38-05541 Rev. *F

Page 13 of 31

TDI and TDO balls as shown in the Tap Controller Block
Diagram. Upon power-up, the instruction register is loaded
with the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as
described in the previous section.

When the TAP controller is in the Capture-IR state, the two
least significant bits are loaded with a binary “01” pattern to
allow for fault isolation of the board-level serial test data path.

Bypass Register

To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between the
TDI and TDO balls. This allows data to be shifted through the
SRAM with minimal delay. The bypass register is set LOW
(V

SS

) when the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all the input and
bidirectional balls on the SRAM. 

The boundary scan register is loaded with the contents of the
RAM I/O ring when the TAP controller is in the Capture-DR
state and is then placed between the TDI and TDO balls when
the controller is moved to the Shift-DR state. The EXTEST,
SAMPLE/PRELOAD and SAMPLE Z instructions can be used
to capture the contents of the I/O ring.

The Boundary Scan Order tables show the order in which the
bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected
to TDI and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired
into the SRAM and can be shifted out when the TAP controller
is in the Shift-DR state. The ID register has a vendor code and
other information described in the Identification Register
Definitions table.

TAP Instruction Set

Overview

Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in the
Instruction Codes table. Three of these instructions are listed
as RESERVED and should not be used. The other five instruc-
tions are described in detail below.

The TAP controller used in this SRAM is not fully compliant to
the 1149.1 convention because some of the mandatory 1149.1
instructions are not fully implemented.

The TAP controller cannot be used to load address data or
control signals into the SRAM and cannot preload the I/O
buffers. The SRAM does not implement the 1149.1 commands
EXTEST or INTEST or the PRELOAD portion of
SAMPLE/PRELOAD; rather, it performs a capture of the I/O
ring when these instructions are executed.

Instructions are loaded into the TAP controller during the
Shift-IR state when the instruction register is placed between
TDI and TDO. During this state, instructions are shifted

through the instruction register through the TDI and TDO balls.
To execute the instruction once it is shifted in, the TAP
controller needs to be moved into the Update-IR state.

EXTEST

EXTEST is a mandatory 1149.1 instruction which is to be
executed whenever the instruction register is loaded with all
0s. EXTEST is not implemented in this SRAM TAP controller,
and therefore this device is not compliant to 1149.1. The TAP
controller does recognize an all-0 instruction.

When an EXTEST instruction is loaded into the instruction
register, the SRAM responds as if a SAMPLE/PRELOAD
instruction has been loaded. There is one difference between
the two instructions. Unlike the SAMPLE/PRELOAD
instruction, EXTEST places the SRAM outputs in a High-Z
state.

IDCODE

The IDCODE instruction causes a vendor-specific, 32-bit code
to be loaded into the instruction register. It also places the
instruction register between the TDI and TDO balls and allows
the IDCODE to be shifted out of the device when the TAP
controller enters the Shift-DR state.

The IDCODE instruction is loaded into the instruction register
upon power-up or whenever the TAP controller is given a test
logic reset state.

SAMPLE Z

The SAMPLE Z instruction causes the boundary scan register
to be connected between the TDI and TDO balls when the TAP
controller is in a Shift-DR state. It also places all SRAM outputs
into a High-Z state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1-mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the in-
struction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is cap-
tured in the boundary scan register. 

The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because
there is a large difference in the clock frequencies, it is possi-
ble that during the Capture-DR state, an input or output will
undergo a transition. The TAP may then try to capture a signal
while in transition (metastable state). This will not harm the
device, but there is no guarantee as to the value that will be
captured. Repeatable results may not be possible.

To guarantee that the boundary scan register will capture the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture set-up plus
hold times (t

CS

 and t

CH

). The SRAM clock input might not be

captured correctly if there is no way in a design to stop (or
slow) the clock during a SAMPLE/PRELOAD instruction. If this
is an issue, it is still possible to capture all other signals and
simply ignore the value of the CK and CK# captured in the
boundary scan register.

Once the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the bound-
ary scan register between the TDI and TDO pins.

[+] Feedback 

Summary of Contents for CY7C1361C

Page 1: ...positive edge triggered Clock Input CLK The synchronous inputs include all addresses all data inputs address pipelining Chip Enable CE1 depth expansion Chip Enables CE2 and CE3 2 Burst Control inputs...

Page 2: ...EGISTER BYTE WRITE REGISTER DQD DQPD BYTE WRITE REGISTER DQD DQPD BYTE WRITE REGISTER DQC DQPC BYTE WRITE REGISTER DQB DQPB BYTE WRITE REGISTER DQA DQPA BYTE WRITE REGISTER Logic Block Diagram CY7C136...

Page 3: ...60 59 58 57 56 55 54 53 52 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 MODE CY7C1361C 256K x 36 VSS DNU A A A A A 1 A 0 NC NC V SS V DD NC A A A A A A A A A NC NC VDDQ VSSQ NC DQPA...

Page 4: ...61 60 59 58 57 56 55 54 53 52 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 MODE CY7C1361C 256K x 36 VSS DNU A A A A A 1 A 0 NC NC V SS V DD A A A A A A A A NC NC VDDQ VSSQ NC DQPA...

Page 5: ...C NC CE1 OE ADV GW VSS VSS VSS VSS VSS VSS VSS VSS DQPA MODE DQPD DQPB BWB BWC NC VDD NC BWA NC BWE BWD ZZ 2 3 4 5 6 7 1 A B C D E F G H J K L M N P R T U VDDQ NC 288M NC 144M NC DQB DQB DQB DQB A A A...

Page 6: ...C DQA DQA VDD VDDQ VDD VDDQ DQB VDD NC VDD DQA VDD VDDQ DQA VDDQ VDD VDD VDDQ VDD VDDQ DQA VDDQ A A VSS A A A DQB DQB DQB ZZ DQA DQA DQPA DQA A VDDQ A CY7C1363C 512K x 18 A0 A VSS 2 3 4 5 6 7 1 A B C...

Page 7: ...from Processor sampled on the rising edge of CLK active LOW When asserted LOW addresses presented to the device are captured in the address registers A 1 0 are also loaded into the burst counter When...

Page 8: ...VDD through a pull up resistor This pin is not available on TQFP packages TMS JTAG serial input Synchronous Serial data In to the JTAG circuit Sampled on the rising edge of TCK If the JTAG feature is...

Page 9: ...appropriate data will be latched and written into the device Byte writes are allowed All I Os are tri stated during a byte write Since this is a common I O device the asynchronous OE input signal must...

Page 10: ...H H L H Tri state Read Cycle Continue Burst Next H X X L X H L H L L H Q Read Cycle Continue Burst Next H X X L X H L H H L H Tri state Write Cycle Continue Burst Next X X X L H H L L X L H D Write Cy...

Page 11: ...DQPA H L L H H L Write Bytes D B DQPD DQPA H L L H L H Write Bytes D B A DQPD DQPB DQPA H L L H L L Write Bytes D B DQPD DQPB H L L L H H Write Bytes D B A DQPD DQPC DQPA H L L L H L Write Bytes D C...

Page 12: ...rnally resulting in a logic HIGH level Test Data In TDI The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers The register bet...

Page 13: ...hen the instruction register is placed between TDI and TDO During this state instructions are shifted through the instruction register through the TDI and TDO balls To execute the instruction once it...

Page 14: ...for future use Do not use these instructions TAP Timing TAP AC Switching Characteristics Over the Operating Range 9 10 Parameter Parameter Min Max Unit Clock tTCYC TCK Clock Cycle Time 50 ns tTF TCK C...

Page 15: ...1 V VOL1 Output LOW Voltage IOL 8 0 mA VDDQ 3 3V 0 4 V IOL 8 0 mA VDDQ 2 5V 0 4 V VOL2 Output LOW Voltage IOL 100 A VDDQ 3 3V 0 2 V VDDQ 2 5V 0 2 V VIH Input HIGH Voltage VDDQ 3 3V 2 0 VDD 0 3 V VDDQ...

Page 16: ...ode and places the register between TDI and TDO This operation does not affect SRAM operations SAMPLE Z 010 Captures I O ring contents Places the boundary scan register between TDI and TDO Forces all...

Page 17: ...0 M2 DQB 15 E7 DQB 51 L1 DQD 15 E7 DQA 51 L1 DQB 16 F6 DQB 52 K2 DQD 16 F6 DQA 52 K2 DQB 17 G7 DQB 53 Internal Internal 17 G7 DQA 53 Internal Internal 18 H6 DQB 54 H1 DQC 18 H6 DQA 54 H1 DQB 19 T7 ZZ...

Page 18: ...50 L1 DQB 15 D11 DQB 51 K1 DQD 15 D11 DQA 51 K1 DQB 16 E11 DQB 52 J1 DQD 16 E11 DQA 52 J1 DQB 17 F11 DQB 53 Internal Internal 17 F11 DQA 53 Internal Internal 18 G11 DQB 54 G2 DQC 18 G11 DQA 54 G2 DQB...

Page 19: ...I O 1 7 VDD 0 3V V VIL Input LOW Voltage 13 for 3 3V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input Current of MODE Input VSS 30 A Input VDD...

Page 20: ...on to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 29 41 34 1 16 8 C W JC Thermal Resistance Junction to Case 6 31 14 0 3 0 C W AC...

Page 21: ...0 5 ns tADH ADSP ADSC Hold After CLK Rise 0 5 0 5 ns tWEH GW BWE BW A D Hold After CLK Rise 0 5 0 5 ns tADVH ADV Hold After CLK Rise 0 5 0 5 ns tDH Data Input Hold After CLK Rise 0 5 0 5 ns tCEH Chip...

Page 22: ...GH or CE2 is LOW or CE3 is HIGH tCYC tCL CLK tADH tADS ADDRESS t CH tAH tAS A1 tCEH tCES Data Out Q High Z tCLZ tDOH tCDV tOEHZ tCDV Single READ BURST READ tOEV tOELZ tCHZ Burst wraps around to its in...

Page 23: ...ADDRESS t CH tAH tAS A1 tCEH tCES High Z BURST READ BURST WRITE D A2 D A2 1 D A2 1 D A1 D A3 D A3 1 D A3 2 D A2 3 A2 A3 Extended BURST WRITE D A2 2 Single WRITE tADH tADS tADH tADS t OEHZ tADVH tADVS...

Page 24: ...is initiated by ADSP or ADSC 25 GW is HIGH Timing Diagrams continued tCYC t CL CLK tADH tADS ADDRESS t CH tAH tAS A2 tCEH tCES Single WRITE D A3 A3 A4 BURST READ Back to Back READs High Z Q A2 Q A4 Q...

Page 25: ...d when entering ZZ mode See Cycle Descriptions table for all possible signal conditions to deselect the device 27 DQs are in high Z when exiting ZZ sleep mode Timing Diagrams continued t ZZ I SUPPLY C...

Page 26: ...rid Array 14 x 22 x 2 4 mm Lead Free CY7C1363C 133BGXC CY7C1361C 133BZC 51 85180 165 ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm CY7C1363C 133BZC CY7C1361C 133BZXC 51 85180 165 ball Fine Pitch Ba...

Page 27: ...20 x 1 4 mm Lead Free 3 Chip Enable lndustrial CY7C1363C 100AXI CY7C1361C 100AJXI 51 85050 100 pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free 2 Chip Enable CY7C1363C 100AJXI CY7C1361C 100BGI 51 85...

Page 28: ...IMENSIONS IN MILLIMETERS BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 0 30 0 08 0 65 20 00 0 10 22 00 0 20 1 40 0 05 12 1 1 60 MAX 0 05 MIN 0 60 0 15 0 MIN 0 25 0 7 8X STAN...

Page 29: ...K J U P N M T R 12 00 19 50 30 TYP 2 40 MAX A1 CORNER 0 70 REF U T R P N M L K J H G F E D C A B 2 1 4 3 6 5 7 1 00 3X REF 7 62 22 00 0 20 14 00 0 20 1 27 60 0 10 C 0 15 C B A 0 15 4X 0 05 M C 0 75 0...

Page 30: ...tion PowerPC is a trademark of IBM Corporation All product and company names mentioned in this document are the trademarks of their respective holders Package Diagrams continued A 1 PIN 1 CORNER 15 00...

Page 31: ...Jc for TQFP Package from 25 and 9 C W to 29 41 and 6 13 C W respectively Changed JA and Jc for BGA Package from 25 and 6 C W to 34 1 and 14 0 C W respectively Changed JA and Jc for FBGA Package from...

Reviews: