CY7C1361C
CY7C1363C
Document #: 38-05541 Rev. *F
Page 10 of 31
ZZ Mode Electrical Characteristics
Parameter
Description
Test Conditions
Min.
Max.
Unit
I
DDZZ
Sleep mode standby current
ZZ > V
DD
– 0.2V
Comm/ind’l
50
mA
Automotive
60
mA
t
ZZS
Device operation to ZZ
ZZ > V
DD
– 0.2V
2t
CYC
ns
t
ZZREC
ZZ recovery time
ZZ < 0.2V
2t
CYC
ns
t
ZZI
ZZ active to sleep current
This parameter is sampled
2t
CYC
ns
t
RZZI
ZZ Inactive to exit sleep current
This parameter is sampled
0
ns
Truth Table
[3, 4, 5, 6, 7]
Cycle Description
Address
Used
CE
1
CE
2
CE
3
ZZ
ADSP
ADSC
ADV WRITE OE CLK
DQ
Deselected Cycle, Power-down
None
H
X
X
L
X
L
X
X
X
L-H
Tri-state
Deselected Cycle, Power-down
None
L
L
X
L
L
X
X
X
X
L-H
Tri-state
Deselected Cycle, Power-down
None
L
X
H
L
L
X
X
X
X
L-H
Tri-state
Deselected Cycle, Power-down
None
L
L
X
L
H
L
X
X
X
L-H
Tri-state
Deselected Cycle, Power-down
None
X
X
X
L
H
L
X
X
X
L-H
Tri-state
Sleep Mode, Power-down
None
X
X
X
H
X
X
X
X
X
X
Tri-state
Read Cycle, Begin Burst
External
L
H
L
L
L
X
X
X
L
L-H
Q
Read Cycle, Begin Burst
External
L
H
L
L
L
X
X
X
H
L-H
Tri-state
Write Cycle, Begin Burst
External
L
H
L
L
H
L
X
L
X
L-H
D
Read Cycle, Begin Burst
External
L
H
L
L
H
L
X
H
L
L-H
Q
Read Cycle, Begin Burst
External
L
H
L
L
H
L
X
H
H
L-H
Tri-state
Read Cycle, Continue Burst
Next
X
X
X
L
H
H
L
H
L
L-H
Q
Read Cycle, Continue Burst
Next
X
X
X
L
H
H
L
H
H
L-H
Tri-state
Read Cycle, Continue Burst
Next
H
X
X
L
X
H
L
H
L
L-H
Q
Read Cycle, Continue Burst
Next
H
X
X
L
X
H
L
H
H
L-H
Tri-state
Write Cycle, Continue Burst
Next
X
X
X
L
H
H
L
L
X
L-H
D
Write Cycle, Continue Burst
Next
H
X
X
L
X
H
L
L
X
L-H
D
Read Cycle, Suspend Burst
Current
X
X
X
L
H
H
H
H
L
L-H
Q
Read Cycle, Suspend Burst
Current
X
X
X
L
H
H
H
H
H
L-H
Tri-state
Read Cycle, Suspend Burst
Current
H
X
X
L
X
H
H
H
L
L-H
Q
Read Cycle, Suspend Burst
Current
H
X
X
L
X
H
H
H
H
L-H
Tri-state
Write Cycle, Suspend Burst
Current
X
X
X
L
H
H
H
L
X
L-H
D
Write Cycle, Suspend Burst
Current
H
X
X
L
X
H
H
L
X
L-H
D
Notes:
3. X=”Don't Care.” H = Logic HIGH, L = Logic LOW.
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.
5. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW
X
. Writes may occur only on subsequent clocks after
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't
care for the remainder of the write cycle.
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).
[+] Feedback