background image

 

CY7C1361C
CY7C1363C

Document #: 38-05541 Rev. *F

Page 7 of 31

Pin Definitions

Name

I/O

Description

A

0

, A

1

, A

Input-

Synchronous

Address Inputs used to select one of the address location

s. Sampled at the rising 

edge of the CLK if ADSP or ADSC is active LOW, and CE

1

,

 

CE

2

, and

 

CE

3

[2] 

are sampled 

active. A

[1:0]

 feed the 2-bit counter.

BW

A

,BW

B

BW

C

,BW

D

Input-

Synchronous

Byte Write Select Inputs, active LOW

. Qualified with BWE to conduct byte writes to the 

SRAM. Sampled on the rising edge of CLK.

GW

Input-

Synchronous

Global Write Enable Input, active LOW

. When asserted LOW on the rising edge of CLK, a 

global write is conducted (ALL bytes are written, regardless of the values on BW

and BWE).

CLK

Input-
Clock

Clock Input

. Used to capture all synchronous inputs to the device. Also used to increment 

the burst counter when ADV is asserted LOW, during a burst operation.

CE

1

Input-

Synchronous

Chip Enable 1 Input, active LOW

. Sampled on the rising edge of CLK. Used in 

conjunction with CE

2

 and CE

3

[2]

 to select/deselect the device. ADSP is ignored if CE

1

 is 

HIGH. CE

1

 is sampled only when a new external address is loaded.

CE

2

Input-

Synchronous

Chip Enable 2 Input, active HIGH

. Sampled on the rising edge of CLK. Used in 

conjunction with CE

1

 and CE

3

[2]

 to select/deselect the device. CE

is sampled only when 

a new external address is loaded.

CE

3

[2]

Input-

Synchronous

Chip Enable 3 Input, active LOW

. Sampled on the rising edge of CLK. Used in 

conjunction with CE

1

 and CE

to select/deselect the device.CE

3

 is sampled only when a 

new external address is loaded.

OE

Input-

Asynchronous

Output Enable, asynchronous input, active LOW

. Controls the direction of the I/O pins. 

When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are 
tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle 
when emerging from a deselected state. 

ADV

Input-

Synchronous

Advance Input signal, sampled on the rising edge of CLK

. When asserted, it automat-

ically increments the address in a burst cycle.

ADSP

Input-

Synchronous

Address Strobe from Processor, sampled on the rising edge of CLK, active LOW

When asserted LOW, addresses presented to the device are captured in the address 
registers. A

[1:0]

 are also loaded into the burst counter. When ADSP and ADSC are both 

asserted, only ADSP is recognized. ASDP is ignored when CE

1

 is deasserted HIGH.

ADSC

Input-

Synchronous

Address Strobe from Controller, sampled on the rising edge of CLK, active LOW

When asserted LOW, addresses presented to the device are captured in the address 
registers. A

[1:0]

 are also loaded into the burst counter. When ADSP and ADSC are both 

asserted, only ADSP is recognized.

BWE

Input-

Synchronous

Byte Write Enable Input, active LOW

. Sampled on the rising edge of CLK. This signal 

must be asserted LOW to conduct a byte write.

ZZ

Input-

Asynchronous

ZZ “sleep” Input, active HIGH

. When asserted HIGH places the device in a 

non-time-critical “sleep” condition with data integrity preserved. For normal operation,
this pin has to be LOW or left floating. ZZ pin has an internal pull-down.

DQ

s

I/O-

Synchronous

Bidirectional Data I/O lines

. As inputs, they feed into an on-chip data register that is 

triggered by the rising edge of CLK. As outputs, they deliver the data contained in the 
memory location specified by the addresses presented during the previous clock rise of 
the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, 
the pins behave as outputs. When HIGH, DQ

s

 and DQP

X

 are placed in a tri-state 

condition.The outputs are automatically tri-stated during the data portion of a write 
sequence, during the first clock when emerging from a deselected state, and when the 
device is deselected, regardless of the state of OE.

DQP

X

I/O-

Synchronous

Bidirectional Data Parity I/O Lines

. Functionally, these signals are identical to DQ

s

.

 

During write sequences, DQP

X

 is controlled by BW

X

 correspondingly.

MODE

Input-

Static

Selects Burst Order

. When tied to GND selects linear burst sequence. When tied to V

DD

 

or left floating selects interleaved burst sequence. This is a strap pin and should remain 
static during device operation. Mode Pin has an internal pull-up.

V

DD

Power Supply 

Power supply inputs to the core of the device

V

DDQ

I/O Power Supply

Power supply for the I/O circuitry

[+] Feedback 

Summary of Contents for CY7C1361C

Page 1: ...positive edge triggered Clock Input CLK The synchronous inputs include all addresses all data inputs address pipelining Chip Enable CE1 depth expansion Chip Enables CE2 and CE3 2 Burst Control inputs...

Page 2: ...EGISTER BYTE WRITE REGISTER DQD DQPD BYTE WRITE REGISTER DQD DQPD BYTE WRITE REGISTER DQC DQPC BYTE WRITE REGISTER DQB DQPB BYTE WRITE REGISTER DQA DQPA BYTE WRITE REGISTER Logic Block Diagram CY7C136...

Page 3: ...60 59 58 57 56 55 54 53 52 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 MODE CY7C1361C 256K x 36 VSS DNU A A A A A 1 A 0 NC NC V SS V DD NC A A A A A A A A A NC NC VDDQ VSSQ NC DQPA...

Page 4: ...61 60 59 58 57 56 55 54 53 52 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 MODE CY7C1361C 256K x 36 VSS DNU A A A A A 1 A 0 NC NC V SS V DD A A A A A A A A NC NC VDDQ VSSQ NC DQPA...

Page 5: ...C NC CE1 OE ADV GW VSS VSS VSS VSS VSS VSS VSS VSS DQPA MODE DQPD DQPB BWB BWC NC VDD NC BWA NC BWE BWD ZZ 2 3 4 5 6 7 1 A B C D E F G H J K L M N P R T U VDDQ NC 288M NC 144M NC DQB DQB DQB DQB A A A...

Page 6: ...C DQA DQA VDD VDDQ VDD VDDQ DQB VDD NC VDD DQA VDD VDDQ DQA VDDQ VDD VDD VDDQ VDD VDDQ DQA VDDQ A A VSS A A A DQB DQB DQB ZZ DQA DQA DQPA DQA A VDDQ A CY7C1363C 512K x 18 A0 A VSS 2 3 4 5 6 7 1 A B C...

Page 7: ...from Processor sampled on the rising edge of CLK active LOW When asserted LOW addresses presented to the device are captured in the address registers A 1 0 are also loaded into the burst counter When...

Page 8: ...VDD through a pull up resistor This pin is not available on TQFP packages TMS JTAG serial input Synchronous Serial data In to the JTAG circuit Sampled on the rising edge of TCK If the JTAG feature is...

Page 9: ...appropriate data will be latched and written into the device Byte writes are allowed All I Os are tri stated during a byte write Since this is a common I O device the asynchronous OE input signal must...

Page 10: ...H H L H Tri state Read Cycle Continue Burst Next H X X L X H L H L L H Q Read Cycle Continue Burst Next H X X L X H L H H L H Tri state Write Cycle Continue Burst Next X X X L H H L L X L H D Write Cy...

Page 11: ...DQPA H L L H H L Write Bytes D B DQPD DQPA H L L H L H Write Bytes D B A DQPD DQPB DQPA H L L H L L Write Bytes D B DQPD DQPB H L L L H H Write Bytes D B A DQPD DQPC DQPA H L L L H L Write Bytes D C...

Page 12: ...rnally resulting in a logic HIGH level Test Data In TDI The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers The register bet...

Page 13: ...hen the instruction register is placed between TDI and TDO During this state instructions are shifted through the instruction register through the TDI and TDO balls To execute the instruction once it...

Page 14: ...for future use Do not use these instructions TAP Timing TAP AC Switching Characteristics Over the Operating Range 9 10 Parameter Parameter Min Max Unit Clock tTCYC TCK Clock Cycle Time 50 ns tTF TCK C...

Page 15: ...1 V VOL1 Output LOW Voltage IOL 8 0 mA VDDQ 3 3V 0 4 V IOL 8 0 mA VDDQ 2 5V 0 4 V VOL2 Output LOW Voltage IOL 100 A VDDQ 3 3V 0 2 V VDDQ 2 5V 0 2 V VIH Input HIGH Voltage VDDQ 3 3V 2 0 VDD 0 3 V VDDQ...

Page 16: ...ode and places the register between TDI and TDO This operation does not affect SRAM operations SAMPLE Z 010 Captures I O ring contents Places the boundary scan register between TDI and TDO Forces all...

Page 17: ...0 M2 DQB 15 E7 DQB 51 L1 DQD 15 E7 DQA 51 L1 DQB 16 F6 DQB 52 K2 DQD 16 F6 DQA 52 K2 DQB 17 G7 DQB 53 Internal Internal 17 G7 DQA 53 Internal Internal 18 H6 DQB 54 H1 DQC 18 H6 DQA 54 H1 DQB 19 T7 ZZ...

Page 18: ...50 L1 DQB 15 D11 DQB 51 K1 DQD 15 D11 DQA 51 K1 DQB 16 E11 DQB 52 J1 DQD 16 E11 DQA 52 J1 DQB 17 F11 DQB 53 Internal Internal 17 F11 DQA 53 Internal Internal 18 G11 DQB 54 G2 DQC 18 G11 DQA 54 G2 DQB...

Page 19: ...I O 1 7 VDD 0 3V V VIL Input LOW Voltage 13 for 3 3V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input Current of MODE Input VSS 30 A Input VDD...

Page 20: ...on to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 29 41 34 1 16 8 C W JC Thermal Resistance Junction to Case 6 31 14 0 3 0 C W AC...

Page 21: ...0 5 ns tADH ADSP ADSC Hold After CLK Rise 0 5 0 5 ns tWEH GW BWE BW A D Hold After CLK Rise 0 5 0 5 ns tADVH ADV Hold After CLK Rise 0 5 0 5 ns tDH Data Input Hold After CLK Rise 0 5 0 5 ns tCEH Chip...

Page 22: ...GH or CE2 is LOW or CE3 is HIGH tCYC tCL CLK tADH tADS ADDRESS t CH tAH tAS A1 tCEH tCES Data Out Q High Z tCLZ tDOH tCDV tOEHZ tCDV Single READ BURST READ tOEV tOELZ tCHZ Burst wraps around to its in...

Page 23: ...ADDRESS t CH tAH tAS A1 tCEH tCES High Z BURST READ BURST WRITE D A2 D A2 1 D A2 1 D A1 D A3 D A3 1 D A3 2 D A2 3 A2 A3 Extended BURST WRITE D A2 2 Single WRITE tADH tADS tADH tADS t OEHZ tADVH tADVS...

Page 24: ...is initiated by ADSP or ADSC 25 GW is HIGH Timing Diagrams continued tCYC t CL CLK tADH tADS ADDRESS t CH tAH tAS A2 tCEH tCES Single WRITE D A3 A3 A4 BURST READ Back to Back READs High Z Q A2 Q A4 Q...

Page 25: ...d when entering ZZ mode See Cycle Descriptions table for all possible signal conditions to deselect the device 27 DQs are in high Z when exiting ZZ sleep mode Timing Diagrams continued t ZZ I SUPPLY C...

Page 26: ...rid Array 14 x 22 x 2 4 mm Lead Free CY7C1363C 133BGXC CY7C1361C 133BZC 51 85180 165 ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm CY7C1363C 133BZC CY7C1361C 133BZXC 51 85180 165 ball Fine Pitch Ba...

Page 27: ...20 x 1 4 mm Lead Free 3 Chip Enable lndustrial CY7C1363C 100AXI CY7C1361C 100AJXI 51 85050 100 pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free 2 Chip Enable CY7C1363C 100AJXI CY7C1361C 100BGI 51 85...

Page 28: ...IMENSIONS IN MILLIMETERS BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 0 30 0 08 0 65 20 00 0 10 22 00 0 20 1 40 0 05 12 1 1 60 MAX 0 05 MIN 0 60 0 15 0 MIN 0 25 0 7 8X STAN...

Page 29: ...K J U P N M T R 12 00 19 50 30 TYP 2 40 MAX A1 CORNER 0 70 REF U T R P N M L K J H G F E D C A B 2 1 4 3 6 5 7 1 00 3X REF 7 62 22 00 0 20 14 00 0 20 1 27 60 0 10 C 0 15 C B A 0 15 4X 0 05 M C 0 75 0...

Page 30: ...tion PowerPC is a trademark of IBM Corporation All product and company names mentioned in this document are the trademarks of their respective holders Package Diagrams continued A 1 PIN 1 CORNER 15 00...

Page 31: ...Jc for TQFP Package from 25 and 9 C W to 29 41 and 6 13 C W respectively Changed JA and Jc for BGA Package from 25 and 6 C W to 34 1 and 14 0 C W respectively Changed JA and Jc for FBGA Package from...

Reviews: