background image

CY7C1215H

Document #: 38-05666 Rev. *B

Page 4 of 15

Functional Overview

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock. 

The CY7C1215H supports secondary cache in systems
utilizing either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium and i486

processors. The linear burst sequence is suited for processors
that utilize a linear burst sequence. The burst order is user
selectable, and is determined by sampling the MODE input.
Accesses can be initiated with either the Processor Address
Strobe (ADSP) or the Controller Address Strobe (ADSC).
Address advancement through the burst sequence is
controlled by the ADV input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.

Byte Write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BW

[A:D]

) inputs. A Global Write

Enable (GW) overrides all Byte Write inputs and writes data to
all four bytes. All writes are simplified with on-chip
synchronous self-timed Write circuitry.

Three synchronous Chip Selects (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. ADSP is ignored if CE

1

is HIGH.

Single Read Accesses

This access is initiated when the following conditions are
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,
(2) CE

1

, CE

2

, CE

3

 are all asserted active, and (3) the Write

signals (GW, BWE) are all deserted HIGH. ADSP is ignored if
CE

1

 is HIGH. The address presented to the address inputs (A)

is stored into the address advancement logic and the address
register while being presented to the memory array. The corre-
sponding data is allowed to propagate to the input of the output
registers. At the rising edge of the next clock the data is
allowed to propagate through the output register and onto the
data bus within t

CO

 if OE is active LOW. The only exception

occurs when the SRAM is emerging from a deselected state
to a selected state, its outputs are always tri-stated during the
first cycle of the access. After the first cycle of the access, the
outputs are controlled by the OE signal. Consecutive single
Read cycles are supported. Once the SRAM is deselected at
clock rise by the chip select and either ADSP or ADSC signals,
its output will tri-state immediately.

Single Write Accesses Initiated by ADSP

This access is initiated when both of the following conditions
are satisfied at clock rise: (1) ADSP is asserted LOW, and
(2) CE

1

, CE

2

, CE

3

 are all asserted active. The address

presented to A is loaded into the address register and the
address advancement logic while being delivered to the
memory array. The Write signals (GW, BWE, and BW

[A:D]

) and

ADV inputs are ignored during this first cycle. 

ADSP-triggered Write accesses require two clock cycles to
complete. If GW is asserted LOW on the second clock rise, the
data presented to the DQ inputs is written into the corre-
sponding address location in the memory array. If GW is HIGH,
then the Write operation is controlled by BWE and BW

[A:D]

signals. The CY7C1215H provides Byte Write capability that
is described in the Write Cycle Descriptions table. Asserting
the Byte Write Enable input (BWE) with the selected Byte
Write (BW

[A:D]

) input, will selectively write to only the desired

bytes. Bytes not selected during a Byte Write operation will
remain unaltered. A synchronous self-timed Write mechanism
has been provided to simplify the Write operations. 

Because the CY7C1215H is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQ inputs. Doing so will tri-state the output drivers. As
a safety precaution, DQs are automatically tri-stated whenever
a Write cycle is detected, regardless of the state of OE.

Single Write Accesses Initiated by ADSC

ADSC Write accesses are initiated when the following condi-
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is
deserted HIGH, (3) CE

1

, CE

2

, CE

3

 are all asserted active, and

(4) the appropriate combination of the Write inputs (GW, BWE,
and BW

[A:D]

) are asserted active to conduct a Write to the

desired byte(s). ADSC-triggered Write accesses require a
single clock cycle to complete. The address presented to A is
loaded into the address register and the address
advancement logic while being delivered to the memory array.
The ADV input is ignored during this cycle. If a global Write is
conducted, the data presented to DQ is written into the corre-
sponding address location in the memory core. If a Byte Write
is conducted, only the selected bytes are written. Bytes not
selected during a Byte Write operation will remain unaltered.
A synchronous self-timed Write mechanism has been
provided to simplify the Write operations. 

Because the CY7C1215H is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQ inputs. Doing so will tri-state the output drivers. As
a safety precaution, DQ are automatically tri-stated whenever
a Write cycle is detected, regardless of the state of OE.

Burst Sequences

The CY7C1215H provides a two-bit wraparound counter, fed
by A

1

, A

0

, that implements either an interleaved or linear burst

sequence. The interleaved burst sequence is designed specif-
ically to support Intel Pentium applications. The linear burst
sequence is designed to support processors that follow a
linear burst sequence. The burst sequence is user selectable
through the MODE input.

Asserting ADV LOW at clock rise will automatically increment
the burst counter to the next address in the burst sequence.
Both Read and Write burst operations are supported.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CE

1

, CE

2

, CE

3

, ADSP, and ADSC must

remain inactive for the duration of t

ZZREC

 after the ZZ input

returns LOW.

[+] Feedback 

Summary of Contents for CY7C1215H

Page 1: ...nous inputs include the Output Enable OE and the ZZ pin Addresses and chip enables are registered at rising edge of clock when either Address Strobe Processor ADSP or Address Strobe Controller ADSC ar...

Page 2: ...Q VDDQ DQA DQA NC NC DQC DQC VDDQ VSSQ DQC DQC DQC DQC VSSQ VDDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSSQ DQD DQD DQD DQD VSSQ VDDQ DQD DQD NC A A CE 1 CE 2 BW D BW C BW B BW A CE 3 V DD V SS CLK GW BW...

Page 3: ...as input data pins OE is masked during the first clock of a Read cycle when emerging from a deselected state ADV Input Synchronous Advance Input signal sampled on the rising edge of CLK active LOW Wh...

Page 4: ...esented to the DQ inputs is written into the corre sponding address location in the memory array If GW is HIGH then the Write operation is controlled by BWE and BW A D signals The CY7C1215H provides B...

Page 5: ...ad Continue Read Next L H X X X H L H Tri State Read Continue Read Next L H X X X H L L DQ Read Suspend Read Current L X X X H H H H Tri State Read Suspend Read Current L X X X H H H L DQ Read Suspend...

Page 6: ...te Byte A DQA H L H H H L Write Byte B DQB H L H H L H Write Bytes B A H L H H L L Write Byte C DQC H L H L H H Write Bytes C A H L H L H L Write Bytes C B H L H L L H Write Bytes C B A H L H L L L Wr...

Page 7: ...ge 7 for 3 3V I O 2 0 VDD 0 3V V for 2 5V I O 1 7 VDD 0 3V V VIL Input LOW Voltage 7 for 3 3V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input C...

Page 8: ...llow standard test methods and procedures for measuring thermal impedance per EIA JESD51 30 32 C W JC Thermal Resistance Junction to Case 6 85 C W AC Test Loads and Waveforms Note 9 Tested initially a...

Page 9: ...se 0 5 0 5 ns tADH ADSP ADSC Hold after CLK Rise 0 5 0 5 ns tADVH ADV Hold after CLK Rise 0 5 0 5 ns tWEH GW BWE BW A D Hold after CLK Rise 0 5 0 5 ns tDH Data Input Hold after CLK Rise 0 5 0 5 ns tCE...

Page 10: ...CE3 is HIGH tCYC t CL CLK ADSP t ADH t ADS ADDRESS t CH OE ADSC CE tAH tAS A1 tCEH tCES GW BWE BW A D Data Out Q High Z tCLZ tDOH tCO ADV tOEHZ tCO Single READ BURST READ tOEV tOELZ tCHZ ADV suspends...

Page 11: ...ADS ADDRESS tCH OE ADSC CE tAH tAS A1 tCEH tCES BWE BW A D Data Out Q High Z ADV BURST READ BURST WRITE D A2 D A2 1 D A2 1 D A1 D A3 D A3 1 D A3 2 D A2 3 A2 A3 Data In D Extended BURST WRITE D A2 2 Si...

Page 12: ...e is performed 19 GW is HIGH Switching Waveforms continued tCYC tCL CLK ADSP tADH tADS ADDRESS tCH OE ADSC CE tAH tAS A2 tCEH tCES BWE BW A D Data Out Q High Z ADV Single WRITE D A3 A4 A5 A6 D A5 D A6...

Page 13: ...entering ZZ mode See Cycle Descriptions table for all possible signal conditions to deselect the device 21 DQs are in High Z when exiting ZZ sleep mode Switching Waveforms continued t ZZ I SUPPLY CLK...

Page 14: ...ed trademark of IBM Corporation All product and company names mentioned in this document may be trademarks of their respective holders Ordering Information Not all of the speed package and temperature...

Page 15: ...poration on Page 1 from 3901 North First Street to 198 Champion Court Added 2 5VI O option Changed Three State to Tri State Included Maximum Ratings for VDDQ relative to GND Modified Input Load to Inp...

Reviews: