background image

13

version has been ignored. This loss is subtracted from the efficiency.

CO A

ir

 f

rEE

 

Certain standards ( ANSI Z21.1) for Carbon Monoxide are stated in terms of air-free.  Air-free refers to the 

concentration of CO in combustion gases undiluted with flue, or other gases containing little CO. This value is com-

puted using an equation that takes into account the O2 concentration of the flue gas. 

 

•  If 5% O2 is measured (O2m) in the flue then the CO gas value will be recalculated as if 0% were measured.  

 

    The equation for air-free is as follows:

 

  -  COaf = CO PPM x [(20.9) / (20.9 - O2m)]

 

•  In our example if a reading of 325 PPM were measured then the air-free value would be calculated as follows: 

 

  -  COaf = 325 PPM x [(20.9) / (20.9 - 5)]  COaf = 325 PPM x [(20.9) / (15.9)] COaf = 427 

 

We may be given a limit on our gas range by the local authority, which stated that we must not emit more than 

400-PPM Carbon Monoxide air-free. In the example we would be breaking the limit and corrective action should be 

taken to reduce the level of CO. Air-free values prevent false readings being submitted, e.g. allowing more air into the 

boiler will increase the oxygen level in the flue and dilute any toxic gas reading. Air-free referencing gives readings as if 

they were undiluted.

C

OmbUstiOn

 E

ffiCiEnCy

 C

ALCULAtiOns

 

This identifies three sources of loss associated with fuel burning:

 

  • Losses due to flue gasses:  

 

   

- Dry Flue gas loss, Moisture and hydrogen,

 

   

- Sensible heat of water vapor, Unburned gas

 

  • Losses due to refuse: 

 

 

   

- Combustible in ash, riddling and dust

 

  • Other losses: 

 

   

- Radiation, convection, conduction other unmeasured losses

 

Net efficiency calculations assume that the energy contained in the water vapor (formed as a product of 

combustion and from wet fuel) is recovered and the wet loss term is zero. Gross efficiency calculations assume that 

the energy contained in the water vapor is not recovered. Since the fuel air mixture is never consistent there is the 

possibility of unburned/partially unburned fuel passing through the flue. This is represented by the unburned carbon 

loss. Losses due to combustible matter in ashes, riddling, dust and grit, radiation, convection and conduction are not 

included.
Efficiency Calculation:

• Known Data Fuel: 

 

 

- Qgr = Gross Calorific Value (kJ/kg)

 

- Qnet = Net Calorific Value (kJ/kg)

 

- K1 = Constant based on Gross or Net Calorific • • 

• Known Data Value:

 

- K1g = ( 255 x %Carbon in fuel )/Qgr

 

- K1n = ( 255 x %Carbon in fuel )/Qnet

 

- K2 = % max theoretical CO2 (dry basis)

 

- K3 = % Wet Loss

 

- H2 = % Hydrogen

 

- H2O = % Water

• Measured Data:   

 

-Tf = Flue Temperature

 

-Ti = Inlet Temperature

 

-O2m = % Oxygen in flue gas

 

-O2r = Oxygen reference %

• Calculated data: 

 

- Tnet = Net Temperature

 

- % CO2 content in flue gas

 

-% Dry Flue Gas losses

 

-% Wet losses

 

-% Unburned carbon loss

 

-% Efficiency

• Tnet = Flue Temperature - Inlet Temperature (or ambi-

ent)

• Dry flue gas loss %  

 

 

= 20.9 x K1 x (Tnet) / K2 x (20.9 - O2m)

• Wet loss % 

 

 

 

=  9 x H2 + H2O / Qgr x [2488 + 2.1Tf - 4.2 Ti]

• Simplified 

 

 

 

=  [(9 x H2 + H2O) / Qgr] x 2425 x [1 + 0.001 Tnet]

• Wet loss % 

 

 

 

=   K3(1+0.001xTnet)

• Where K3 

 

 

 

=   [(9 x H2 + H2O) / Qgr] x 2425

• Net  Efficiency %  

 

 

=   100 - dry flue gas losses

 

=   100 - 20.9 x K1n x (Tnet) / K2 x (20.9 -O2m)

• Gross Efficiency % 

 

 

=   100 - {dry flue gas wet losses}

 

=   100 – {[20.9 x K1g x (Tnet) / K2 x (20.9 - O2m)]+  

 

   [K3 x (1 + 0.001 x Tnet)]}

• Excess Air

 

=   [20.9 / (20.9 - O2m) - 1] x 100

• CO2% 

 

=   [(20.9 - O2m) x K2 / 20.9]

• Unburned

 

= K4 x CO / ( CO + CO2 ) 

 

Note: CO scaled in % fuel Loss % 

 

• Where K4 

 

=  70 for coke

 

=  65 for anthracite

 

=  63 for Bituminous coal

 

=  62 for coal tar fuel

 

=  48 for liquid petroleum fuel

 

=  32 for natural gas

The formula for K4 is based on the gross calorific value 

Qgr. To obtain the loss based on net calorific value multi-

ply by Qgr/Qnet. Since this loss is usually small this con-

Содержание EagleX

Страница 1: ...1 Eagle Eagle X Owners Manual...

Страница 2: ...Charge Indicator Light 4 Line Backlit Display Display Line Lights Particle Filter Inside Water Trap Water Trap Protective Rubber Boot w built in Magnets Flue Probe Temperature Plug Plugs into T1 Narr...

Страница 3: ...ulated heat lost turning the Carbon in the fuel to Carbon Dioxide CO2 Wet Calculated heat lost turning the Hydrogen in the fuel into water H2O CO Loss Calculated loss due to partially burnt Carbon Any...

Страница 4: ...as soon as possible Use the GAS ZERO function Eagle X only to purge the analyzer of excess gases To do this on a standard Eagle remove the probe from the flue and turn ON the pump Always allow the rea...

Страница 5: ...ng testing Connect flue probe thermocouple connector to T1 and connect flue probe to water trap as shown above Use optional probe with T2 for inlet temperature Insert Flue Probe in stack Adjust the co...

Страница 6: ...raft probe for measuring pressure Press and hold t DOWN button to zero pressure sensor Rotate test selector to Temp Connect flue probe thermocouple or accessory thermocouple connector to T1 Connect ac...

Страница 7: ...ss Air O2 and CO readings both before and after the blower turns on If the heat exchanger is sealed your O2 and CO readings should remain fairly stable A breach in the heat exchanger may allow fresh a...

Страница 8: ...inch mmHg Millimeters of mercury hPa Hecto pascals EXIT Return to main menu REPORT COMB N VIEW When viewing reports PRESSURE DEL ALL Press s UP or t DOWN to select report EXCH Press and hold s UP or t...

Страница 9: ...04 to 06wc Overfire Draft Water Column Inches 02wc Carbon Monoxide parts per million 100ppm Smoke 0 or manufacturer s recommendation Positive Overfire Gas Oil Oxygen 3 to 9 O2 Stack Draft Water Colum...

Страница 10: ...Verify proper combustion O2 CO Stack Temp Efficiency Hi Low fire Gas Pressure Send and Return Water temp 80 Furnace Verify proper combustion O2 CO Stack Temp Vent Pressure Efficiency Verify Set Up Gas...

Страница 11: ...mperature Rise AC side Static Pressure Drop across coils Oil Furnace Verify proper combustion O2 CO Stack Temp Stack Draft Efficiency Test Verify Smoke Set Up Over Fire Draft Verify proper Static Duct...

Страница 12: ...ce between the ambient pressure level and the pressure level in the flue This is created either by the natural buoyancy of the hot gases created in combustion lifting or by an inducer fan that assists...

Страница 13: ...product of combustion and from wet fuel is recovered and the wet loss term is zero Gross efficiency calculations assume that the energy contained in the water vapor is not recovered Since the fuel air...

Страница 14: ...vents or strong detergents as they may damage the finish impair safety or effect the reliability of the structural components Emptying Cleaning the In Line Water Trap The in line water trap should be...

Страница 15: ...ations Electromagnetic Compatibility EMC This product has been tested for compliance with the following generic standards EN 50081 1 EN 50082 1 and is certified to be compliant The European Council Di...

Страница 16: ...rights You may also have other rights which vary from state to state U S A 1 8 0 0 5 4 7 5 7 4 0 F a x 5 0 3 6 4 3 6 3 2 2 C A N A D A 1 8 7 7 4 7 5 0 6 4 8 F a x 6 0 4 2 7 8 8 2 9 9 W W W U E i T E S...

Отзывы: