Tektronix TYPE 109 Скачать руководство пользователя страница 24

Circuit  Description— Type  109

control  R614  and  a  resistor  R615.  The  FREQUENCY  control 
sets  the  voltage  applied  to  the  base  of  Q613.  Transistor 
Q613  is  an  emitter  follower  whose  output  is  tied  to  the 
base  of  another  emitter  follower,  Q627.  This  second  emitter 
follower  stage  has  the  required  current  capabilities  for  con­
trolling  the  voltage  applied  to  the  Pulser  Multivibrator  stage.

Capacitors  C614  and  627  provide  additional  filtering 

of  the  supply.  They  reduce  the  amplitude  of  the  multivi­

brator  spikes  getting  into  the  supply  from  the  Driver  Multi­
vibrator  stage.

Driver  Multivibrator

The  Driver  Multivibrator  stage  is  basically  a  saturating 

core  square-wave  oscillator.  Transistors  Q725  and  Q735, 
function  as  high-speed  switching  elements.  They  are  used 

in  conjunction  with  transformer  T750  to  provide  a  saturating 

multivibrator  circuit.  During  operation,  the  core  materials 
of  the  transformer  exhibit  rectangular  hysteresis  loops  de­

signed  to  produce  a  square-wave  output.

This  stage  operates  from  the  voltage  set  by  the  FRE­

Q U EN C Y  control.  Bias  for  the  two  transistors  is  obtained 

from  R744.  Initial  operation  of  the  multivibrator  depends 
on  a  slight  unbalance  between  the  transistors.  When  power 

is  first  applied  to  the  instrument,  one  of  the  two  transistors 
conducts  first.  For  descriptive  purposes,  assume  that  Q725 
conducts.

As  Q725  conducts,  current  passing  through  one  half  of 

the  primary  of  T750  induces  a  negative  voltage  at  the  base 

of  Q725  and  positive  voltage  at  the  base  of  Q735.  This 
causes  Q725  to  conduct  more  heavily  and  holds  Q735  in 
cutoff.  This  regenerative  action  continues  until  the  core  of 

T750  saturates.

When  the  transformer  core  saturates,  the  driving  voltage 

at  the  bases  of  the  two  transistors  is  reduced.  This  causes 
current  flow  through  Q725  to  decrease,  which  in  turn  causes 
the  induced  voltages  at  the  bases  of  the  two  transistors  to 
shift  polarity.  With  a  negative  voltage  on  the  base  of 
Q735,  this  transistor  then  conducts  thereby  inducing  a  still 
greater  negative  voltage  at  its  base.  This  action  then  re­
peats  as  Q725  and  Q735  alternately  saturate  the  core  in 
opposite  directions.

The  operating  frequency  of  the  Driver  Multivibrator  stage 

is  determined  by  the  amount  of  time  required  for  the  core 
to  saturate  and  switch  the  multivibrator.  The  amount  of  time 
for  this  action  to  take  place  is  dependent  on  the  number 
of  turns  in  T750  and  the  drive  voltage  on  the  transformer 
primary.

Since  the  number  of  turns  of  T750  are  fixed,  the  multi­

vibrator  frequency  can  be  changed  by  varying  the  drive 
voltage. 

To  accomplish  this,  FREQUEN CY  control  R614, 

when  adjusted,  changes  the  operating  voltage  on  transistors 
Q725  and  Q735.  By  changing  the  transistor  operating  volt­
ages,  core  saturation  time  changes,  thus  changing  the  multi­
vibrator  frequency.  By  adjusting  the  FREQUENCY  control 
the  multivibrator  frequency  can  be  varied  between  approxi­
mately  275  and  360  cycles  per  second.

Resistor  R750  reduces  the  amplitude  of  the  switching  trans- 

sients  or  “ spikes” .  Some  instruments  below  S/N   202  and 
all  instruments  S/N  202  and  up  were  modified  by  adding 
C750.  This  capacitor  blocks  the  dc  path  between  collectors

of  Q725  and  Q735,  decreases  the  ripple  and  spike  ampli­
tudes  at  the  emitter  of  Q627,  and  improves  the  10-volt 

power  supply  regulation  at  low-line  voltage.  In  addition,  as 

an  indirect  effect,  the  capacitor  increases  the  operating 
frequency  of  the  multivibrator  slightly.

Driving  the  Mercury  Switch  Reed

Transformer  T750  provides  approximately  a  200-to-l  step 

down  into  a  one-turn  secondary  (see  Fig.  4-2)  which  couples 
the  energy  to  the  mercury  switch,  and  serves  as  both  a 
switch  body  (or  housing)  and  a  coaxial  return.  The  one- 
turn  secondary  permits  a  large  current  to  flow  and  thus 
a  large  magnetic  field  to  be  generated  to  drive  the  reed 
of  the  mercury  switch.

B ia s   M a g n e t

P rim a ry   W in d in g s 

o f  T 7 5 0

M e rc u ry  Sw itch 

B od y

O n e -T u rn   S e co n d a ry 

o f  T 7 5 0

F ig .  4 - 2 .  Left  fro n t  v ie w   o f  the  T yp e   1 0 9   sh o w in g   the  p u lse r  sectio n.

A   permanent  magnet  is  used  to  provide  magnetic  bias 

for  the  reed  of  the  mercury  switch.  The  field  set  up  by  the 
one-turn  secondary  adds  to  or  subtracts  from  this  bias  and 
causes  the  reed  to  move  from  one  contact  to  the  other. 

The  double  set  of  contacts  causes  the  frequency  of  the  out­

put  pulses  to  be  twice  the  frequency  of  the  multivibrator,  or 
nominally  640  cps.

The  permanent  magnet  is  adjusted  so  the  period  of 

closure  with  each  contact  is  at  least  250 /xsec  or  longer. 

Use  of  the  mercury  switch  eliminates  contact  bounce  at  the 

start  of  the  pulse  and  the  resulting  irregularities  in  the 
generated  pulse.  Use  of  high  pressure  in  the  mercury 
switch  prevents  precontacting  ionization.

105-Volt  Power  Supply

The  secondary  winding  of  T601  that  connects  to  terminals 

6  and  7  supplies  the  ac  voltage  to  full-wave  rectifier  D662A, 

B,  C  and  D.  The  output  of  the  rectifier  is  applied  to  an 
RC  filter  network  consisting  of  C661A,  R661,  and  C661B. 
The  output  of  this  filter  is  applied  to  a  voltage  regulator 
tube,  V679.

4-2

Содержание TYPE 109

Страница 1: ...ERATOR S A f 7 Tektronix Inc S W M illikan W ay P O Box 500 Beaverton Oregon Phone Ml 4 0161 Cables Tektronix Tektronix International A G Terrassenweg 1A Zug Switzerland PH 042 49192 Cable Tekintag Zug Switzerland Telex 53 574 070 299 563 ...

Страница 2: ...ectly to the field there fore all requests for repairs and replace ment parts should be directed to the Tek tronix Field Office or Representative in your area This procedure will assure you the fastest possible service Please include the instrument Type and Serial number with all requests for parts or service Specifications and price change priv ileges reserved Copyright jjP 11963 by Tektronix Inc...

Страница 3: ...TENTS Section 1 W arranty Characteristics Section 2 Operating Instructions Section 3 Applications Section 4 Circuit Description Section 5 Maintenance Section 6 Calibration Section 7 Parts List and Diagram ...

Страница 4: ...PULSE POLARITY T H WER flU R N OFF IO EXTEND MERCURY SWITCH UFE PULSE GENERATOR RISETIME 0 25 NANOSEC EXT POWER OR MONITOR AMPLITUDE 25 50 n 5G V CHG UNS 1 0 5 EXT PWR Type 109 ...

Страница 5: ...risetime is illustrated in Figs 1 1 and 1 2 Fig 1 2 W aveform showing the Type 109 pulse displayed on a Tektronix Type 661 Sam p lin g Oscilloscope Combined risetime of the system between 1 0 and 9 0 am plitude levels is less than 0 4 nanoseconds RISETIM E LESS THAN 0 2 5 nsec 1 nsec Fig 1 1 A double exposure photograph of the output pulse from the Type 109 no external charge lin e and a 1 g igacy...

Страница 6: ...lent Sweep Rate 5 zsec cm Sampling Oscilloscope Type 661 Fig 1 6 Sam e conditions as Figs 1 4 and 1 5 except that the equivalent sweep rate is 1 nsec cm Fig 1 4 W aveform produced by using the extern al charge net w ork supplied as a standard accessory The network connects to one of the 50 12 CH G LIN E connectors on the Type 109 and grounds the unused connector Repetition Rate Infernally adjustab...

Страница 7: ...voltages of the same p olarity Vertical Deflection Factor 9 5 v cm Sweep R ate 5 nsec cm Real Tim e O scilloscope Type 519 Fig 1 9 Double exposure photograph shows that sim ilar condi tions as those in Fig 1 8 w ere used except the external charge voltages are of opposite polarities Output Impedance 50 ohms Power Requirements Line Voltage 105 to 125 volts or 210 to 250 volts 50 to 800 cycles Power...

Страница 8: ...NOTES ...

Страница 9: ...cond The risetime of the pulses is less than 0 25 nanosecond the polarity can be selected and both the amplitude and dura tion are variable The Type 109 is intended for use with fast rise sampling equivalent time systems or conventional real time oscillo scopes The Type 109 is fully transistorized except for a VR tube and requires no warmup time before operating As soon as the POWER ON switch is t...

Страница 10: ...per impedance match The output pulse must be applied through high quality 50 ohm cables or suitable impedance matching devices to keep losses down and maintain the waveform Use RG 8A U for signal connections If a signal delay cable is needed use the Type 113 Delay Cable The only excep tions are the cables used to supply external power to the EXT POWER OR MONITOR connectors to charge the lines The ...

Страница 11: ...ines which are used to generate the output pulses are charged by the internal 100 volt power supply of the Type 109 In these applica tions the pulse amplitude is controlled by the VOLTAGE RANGE and AMPLITUDE controls The VOLTAGE RANGE control determines the range of adjustment of the AMPLI TUDE control The scale of the AMPLITUDE control when used with the setting of the VOLTAGE RANGE control indic...

Страница 12: ...NOTES ...

Страница 13: ...ltage changes from 90 to 10 of the falling portion of the waveform Pulse Width or Duration tw the time duration of the pulse measured between the 50 amplitude levels of the rising and falling portions of the waveform Time Delay td the time interval between the beginning of the input pulse t 0 and the time when the rising portion of the output pulse attains an arbitrary amplitude of 10 above the ba...

Страница 14: ...erator 50fi OUTPUT connector 2 If the pulse is applied to a 50Cl load which has a dc potential across it the actual amplitude of the pulse is the voltage set by the AMPLITUDE control less one half the dc voltage across the load Do not allow more than 200 volts dc to be applied to the Type 109 Pulse Generator 500 OUTPUT connector This limit will keep the internal com ponents of the Type 109 from be...

Страница 15: ...n of the waveform due to the 125 ohm section is about 60 as high as the first portion of the waveform due to the 50 ohm cable The duration of the Type 109 waveform due to the 125 ohm cable is twice the delay time of the cable so it is evident from the picture that the true delay time of the 125 ohm cable used is actually 5 nsec In Fig 3 4 the relative amplitude of the portions of the waveform bear...

Страница 16: ...pen or shorted to coax shield Cable or Component under test 50 S3cable Used as a reference impedance 66 7 Q W v lOOfi 1 Vi w Dividing Pad To 50 Input of Oscilloscope All Resistors 1 Vi watt Fig 3 5 Three w ay dividing pad test circuit for m easuring im pedance by reflection As an alternate method you can construct a dividing pad such as the one shown in Fig 3 5 This pad overcomes a disadvantage of...

Страница 17: ... results that can be expected When the setup is working properly the device under test can then be inserted into the signal line and the output from the test device observed The following factors pertaining to the vertical deflection plate system will be considered dc operating potential of the plates lead inductance deflection plate capacitance transit time limitations delay lines and deflection ...

Страница 18: ...g the equation in Fig 3 8 Make R2 the same value as R l Since the deflection plates are placed close to the path of the electron beam a small amount of current will flow in the deflection plate circuits This current flow varies nonlinearly with the beam position The values of the re sistors R3 and R4 must be selected to keep the current flow from producing a large voltage drop at the deflection pl...

Страница 19: ...he pulse rise and fall times are limited by the bandwidth of the vertical amplifier Fig 3 10 shows the setup which was used to apply the Type 109 pulse to the vertical deflection plates through a Deflection Plate Connector Part No 013 017 The result ant waveform is shown in the same illustration The deflec tion plate connector circuit that was used is similar to the one shown in Fig 3 11 except C3...

Страница 20: ...f R G 8 A U cable as a signal d elay line causes rolloff and a g rad ual upward slope of the w aveform Fig 3 1 1 Circuit diagram of actual circuit used to obtain the w aveform shown in Fig 3 12 Com ponents C3 and R5 aid in sharpening the leading corner and flattening the top of the w aveform to offset the slight deterioration caused by using a long sig nal d elay line 3 8 ...

Страница 21: ...LE CABLE EXT TRIG O O O O INPUT o 6 7 V C M DEFLECTION PLATE CO N N ECTO R Device under test can be inserted at either point 2 0 N SEC CM Fig 3 12 Note the improved w aveform response obtained by using two Type 113 D elay Cables as a signal d elay line and by adding C3 and R5 to the deflection plate connector network 3 9 ...

Страница 22: ...NOTES ...

Страница 23: ... are con nected in parallel for 117 volt operation and in series for 234 volt operation A filter network consisting of T600 C600 and C601 is used to reduce power line transients Thermal cutout TK601 protects the Type 109 against excessively high interior temperature If the temperature inside the instrument be comes too high the contacts of TK601 will open and turn off the power applied to the prim...

Страница 24: ...rive voltage on the transformer primary Since the number of turns of T750 are fixed the multi vibrator frequency can be changed by varying the drive voltage To accomplish this FREQUENCY control R614 when adjusted changes the operating voltage on transistors Q725 and Q735 By changing the transistor operating volt ages core saturation time changes thus changing the multi vibrator frequency By adjust...

Страница 25: ...RGE LINE 2 WAVEFORM MONI TORED AT THE CHG LINE 2 CONNECTOR ALTERNATE PULSE WAVEFORMS AT THE 50 ß OUTPUT CONNECTOR Fig 4 3 Charge and discharge sequence using two separate different length charge lines For this illustration CH ARGE LIN E 2 is twice as long as CHARGE LINE 1 the Type 109 output am plitude is f 50 volts and the nom inal repetition rate of the pulses generated from each contact is 3 2 ...

Страница 26: ...e to capacitive coupling of backwave coupling of backwave Reed closes Contact Reed closes Contact Reed closes Contact with left opens with right opens with left opens contact contact contact Fig 4 4 Charge and discharge sequence using the same charge line Type 109 output am plitude is 5 0 volts and the nom inal repetition rate is 6 4 0 cps 4 4 ...

Страница 27: ...s originally charged to 100 volts then a 50 volt output pulse is obtained A 50 volt pulse also travels down the charge line toward the open end called the back wave As the pulse reaches the open end it is reflected in phase and returns toward the mercury switch As the reflected pulse reaches the mercury switch the charge in the cable drops to essentially zero and the output pulse ends The duration...

Страница 28: ...NOTES ...

Страница 29: ...loose or broken connections damaged con nectors improperly seated VR tube or transistor scorched wires or resistors or broken ceramic terminal strips For most visual troubles the remedy is apparent however particular care must be taken when heat damaged com ponents are detected Overheating of parts is often the result of other less apparent defects in the circuit It is essential that you determine...

Страница 30: ... the solder in the slot and reduces the amount of heat required It is important to use as little heat as is possible and not to twist the soldering iron Twisting or turning the soldering iron in the slot can chip or break the ceramic strip Ceramic Terminal Strips To remove a ceramic terminal strip unsolder all com ponents and connections then pry the strip with yokes attached out of the chassis As...

Страница 31: ...hen make the checks that are listed in the second column until you find the exact cause of the trouble Table 5 1 does not list every possible symptom or check but it does have a few references which direct you to Tables 5 2 and 5 3 These last two tables are arranged so that they can be used individually to perform quick checks on the operation of specific circuits Table 5 3 is a guide for troubles...

Страница 32: ...Maintenance Type 109 70 T D 3 Q Q Q IQ H t Q 3 g n Q_ S Q C D o_ Q Q C D Q 3 Q U o_ D Q 3 o c a D w 5 4 SYMPTOMS ...

Страница 33: ...TABLE 5 2 continued Maintenance Type 109 co i n ca a Q D to U4 o CL 0 1 uo o 5 5 W h e n c o n n e c t e d t o 6 0 c p s m a i n ...

Страница 34: ...NOTES ...

Страница 35: ...a Tektronix Type 540 Series Oscilloscope with a Type L Plug In Unit a Type P6000 10X Attenuator Probe and a Type P6027 IX Attenuator Probe Sustitute specifications Bandpass 30 me with the 10X probe deflection factor at least 50 mv per cm and at least 5 mv per cm at reduced band pass 2 Sampling test oscilloscope such as a Tektronix Type 561 Oscilloscope with a Type 3S76 and a Type 3T77 Plug In Unit...

Страница 36: ...upply Test Points Ohmmeter Range Approx Resistance Readings PULSE POLARITY Switch Setting 100V XI k 7k 18k 100V Xlk 7k 18k 17V R10 18Q 30Q or Fig 6 3 shows the physical locations of these test points Reverse the ohmmeter leads to obtain both readings CALIBRATION PROCEDURE Introduction The equipment used in this calibration procedure is the same as that specifically called out in the Equipment Requ...

Страница 37: ...r 234 volts e Disconnect the VOM and the IX probe 3 Check Frequency Range and Amplitude a Set the front panel controls on the conventional test oscilloscope to the following settings Input coupling DC Volts Cm 1 Volt Variable Volts Cm Calibrated Stability Preset Triggering Mode AC Triggering Slope Time Cm 1 Millisec Variable Time Cm Calibrated Horizontal Display Normal X I b Disconnect the 1 X pro...

Страница 38: ... slight horizontal jitter due to mechan ical closure of the reed and a spike on the leading corners of the waveform due to the tester s lead lengths g Vary the autotransformer between 105 and 125 or 210 and 250 volts and check the waveform for the following characteristics 1 Check for a clean steady waveform display similar to the one shown in Fig 6 6a The closure inter val for one set of contacts...

Страница 39: ...ange i Disconnect the mercury switch tester leads and the 10 X probe from the Type 109 j Check that the autotransformer is set for an output of 117 or 234 volts 5 Check Output Amplitude a Set the Type 109 AMPLITUDE control to 50 and the VOLTAGE RANGE switch to 50 set the PULSE POLAR ITY switch to b Connect a 50 ohm 20 nsec cable to the 50 Q CHG LINE 1 and 50 Q CHG LINE 2 connectors c Connect a 8 5...

Страница 40: ... Trigger pint Set the Type 109 controls to these settings AMPLITUDE 10 VOLTAGE RANGE 5 PULSE POLARITY Fig 6 9 M easuring the risetim e Equivalent sweep rate is 0 2 nsec cm c Connect a 5 nsec cable between the 50 Q OUTPUT connector on the Type 109 and Input A on the sam pling oscilloscope d Advance the oscilloscope Trigger Sensitivity control until a sweep trace appears on the screen Use the A Posi...

Страница 41: ...K counter sunk P pico or ICH1 2 dia diameter PHS pan head steel div division piv peak inverse voltage EMC electrolytic metal cased piste plastic EMT electroyltic metal tubular PMC paper metal cased ext external poly polystyrene f farad Prec precision F 1 focus and intensity PT paper tubular FHS flat head steel PTM paper or plastic tubular molded Fil HS fillister head steel RHS round head steel g o...

Страница 42: ...f 1 3 132 002 Subpart of Mercury Switch Assembly see Page ref 1 4 334 679 1 TAG metal serial no insert 5 210 473 1 NUT switch 12 sided 210 902 1 WASHER 470 ID x 21 32 OD 354 055 1 RING locking switch 23 32 OD x 15 32 ID 6 366 145 1 KNOB voltage range 210 413 1 NUT hex 3 8 32 x 1 2 210 840 1 WASHER 390 ID x 9 16 OD 210 013 1 L0CKWASHER int 3 8 x 11 16 7 366 145 1 KNOB Amplitude 210 413 1 NUT hex 3 ...

Страница 43: ...2 1 CONNECTOR chassis mt coaxial female Consisting Of 129 041 1 POST ground 4 40 thread one end 200 185 1 COVER 3 wire motor base 210 003 2 LOCKWASHER ext 4 210 551 2 NUT hex 4 40 x 1 4 211 015 1 SCREW 4 40 x 1 2 RHS 214 078 2 PIN connecting motor base 377 041 1 INSERT black urea 386 933 1 PLATE motor base mounting Mounting Hardware not included 211 552 2 SCREW 6 32 x 2 BHS 210 457 2 NUT keps 6 32...

Страница 44: ...Parts List Type 109 RIGHT SIDE 7 4 ...

Страница 45: ...et nylon Mounting Hardware 211 019 2 SCREW 4 40 x 1 RHS 210 949 2 WASHER 9 64 ID x 1 2 0D 119 006 1 MAGNET pocket 211 512 1 SCREW 6 32 x 1 2 FHS 343 075 1 CLAMP switch toroid Mounting Hardware 211 564 2 SCREW 6 32 x 3 8 hex socket head cap Mounting Hardware for Switch not included 210 457 4 NUT keps 6 32 x 5 16 2 344 014 1 CLIP spring tube 3 210 413 2 NUT hex 3 8 32 x 1 2 210 840 2 WASHER 390 ID x...

Страница 46: ...Parts List Type 109 LEFT SIDE 7 6 ...

Страница 47: ...1 579 4 POST terminal transistor mounting 210 006 4 LOCKWASHER int 6 210 407 4 NUT hex 6 32 x 1 4 386 978 101 529 2 PLATE mica transistor insulating 387 345 530 2 PLATE insulator anodized alum 210 900 4 WASHER bakelite transistor mounting not shown 210 804 101 579 4 WASHER 8S x 3 8 not shown 210 008 101 579 4 LOCKWASHER int 8 not shown 210 409 101 579 4 NUT hex 8 32 x 5 16 not shown 210 202 580 4 ...

Страница 48: ...Parts List Type 109 CABINET 7 8 ...

Страница 49: ...PA RT N O SERIA L N O EFF D ISC 1 017 060 017 067 101 210 209 CHARGING NETWORK CHARGING NETWORK D ESC RIPTIO N 2 017 502 3 50 O 5 NSEC CABLE RG 8 AU 3 103 013 4 161 010 1 ADAPTER power cord 3 wire to 2 wire 1 CORD power 16 ga 8 ft 3 wire 7 9 ...

Страница 50: ...1 3 ...

Страница 51: ... C661 A B 290 040 2 x 40 if EMC 250 v C679 283 008 1 if Disc Type 500 v C696 283 000 001 if Disc Type 500 v C750 Use 283 057 1 if Disc Type 200 v Diodes D602A B 152 035 2 1N563A Silicon D612 152 064 i o v y4 w 10 Zener D662A B C D 152 047 4 1N2862 or equal Silicon Fuses F601 159 025 5 Amp 3AG Fast Bio 117 v operation 50 60 cycle 159 028 25 Amp 3AG Fast Bio 234 v operation 50 60 cycle Resistors Res...

Страница 52: ...6 473 47 k 2 w R752 302 473 47 k y2 w R753 302 472 4 7 k y2 w R756 302 473 47 k Vi w R757 306 473 47 k 2 w R758 302 472 4 7 k V i w Switches SW601 Unwired 260 199 Wired Toggle SPST POWER ON SW679 260 212 Slide PULSE POLARITY SW690 260 410 262 419 Rotary VOLTAGE RANGE SW750 TK601 260 334 260 413 Mercury Switch Checked Thermo cut out 175 F Transformers T600 120 164 Toroid 3T TD12 T601 120 239 L V Po...

Страница 53: ...uit and component improvements to our instruments as soon as they are developed and tested Sometimes due to printing and shipping require ments we can t get these changes immediately into printed manuals Hence your manual may contain new change information on following pages If it does not your manual is correct as printed ...

Страница 54: ... 3 0 3 3 3 3 3 3 3 3 3 3 3 ...

Страница 55: ...TYPE 109 PARTS LIST CORRECTION CHANGE TO SW750 260 0282 02 Mercury Switch Checked M9UL1 L65 ...

Страница 56: ...f 1 Li _r S s s n s i i j n s n j i ...

Отзывы: