background image

Applications— Type  109

Risetimes

The  risetime  of  any  particular  assembly  of  the  Type  109, 

an  oscilloscope  (conventional  or  sampling),  and  accessory 
pieces  such  as  coax  cables  is  a  variable  depending  upon 
the  cable  characteristics  as  well  as  individual  risetimes.  The 

“ root  of  the  sum  of  the  squares”  method  can  generally  be 
applied  as  an  approximation  method  only,  as  skin  effect 
losses  of  the  cables  do  not  add  properly  using  this  method. 
(The  root-sum-squares  method  applies  accurately  to  gaus- 

sian  systems  only.)

As  a  general  rule,  if  the  equipment  or  signal  being 

measured  has  a  risetime  10  times  slower  than  the  Type  109 
and  other  related  measuring  equipment,  the  error  is  1% . 

This  amount  is  small  and  can  be  considered  to  be  neg­

ligible.  If  the  equipment  being  measured  has  a  risetime 

three  times  slower  than  the  related  measuring  equipment, 
the  error  is  slightly  less  than  6 % .  By  keeping  these  rela­
tionships  in  mind,  the  results  can  be  interpreted  intelli­

gently.

Basic  Precautions

For  faithful  reproduction  of  the  pulse  certain  precautions 

should  be  followed.  These  can  be  summarized  as  follows:

(a)  Use  proper  types  of  cables,  terminations,  attenuators, 

and  impedance  matching  networks.  Low-impedance  coaxial 
cables  are  used  with  the  Type  109  as  signal  conductors. 

It  is  important  that  these  cables  be  terminated  in  their 
characteristic  impedance  (50Q)  to  prevent  reflections  and 
standing  waves  unless  you  deliberately  wish  to  improperly 

terminate  the  cables.  One  application  for  improper  termina­
tion  would  be  to  boost  the  signal  to  an  amplifier  input  by 

leaving  the  end  of  a  transmission  line  unterminated.

(b)  Keep  unshielded  wires  of  uncertain  impedance  short  so 

that  reflection  and/or  cross-coupling  effects  are  not  intro­

duced.  Keep  ground-return  paths  short  and  direct.

(c)  Shield  measuring  equipment  leads  to  prevent  unde­

sired  coupling  to  other  parts  of  the  circuit.  Shielding  is 
especially  required  where  radiation  is  a  problem  and  where 
high-impedance  dividers  or  circuits  are  involved.

(d)  Choose  components  which  function  properly  at  fre­

quencies  and  risetimes  encountered.

(e)  Keep  in  mind  inherent  parameters  in  circuit  com­

ponents  such  as  inductance  present  in  capacitors  or  resistors.

(f)  Consider  the  possible  nonlinear  behavior  of  circuit 

components  due  to  changes  in  voltage  or  temperature 
coefficients.

(g)  Consider  the  input  impedance  of  measuring  equip­

ment.  The  impedance  may  be  enough  to  cause  loading 

effects,  detuning  or  undesirable  reflections.

Connecting  the  Type  109  to  the  Device  Under

 

Test

When  connecting  the  Type  109  Pulse  Generator  output 

to  the  device  under  test,  observe  the  following  precautions:

1.  A  complete  dc-return  path  must  be  provided  between 

the  device  under  test  and  Type  109  Pulse  Generator  50fi 
OUTPUT  connector.

2.  If  the  pulse  is  applied  to  a  50

Cl

  load  which  has  a 

dc  potential  across  it,  the  actual  amplitude  of  the  pulse  is 
the  voltage  set  by  the  AMPLITUDE  control  less  one-half  the 
dc  voltage  across  the  load.  Do  not  allow  more  than  200 
volts  dc  to  be  applied  to  the  Type  109  Pulse  Generator  500 
OUTPUT  connector.  This  limit  will  keep  the  internal  com­

ponents  of  the  Type  109  from  being  damaged.

As  an  example,  assume  that  the  Type  109  Pulse  Gener­

ator  output  is  connected  to  a  load  which  has  + 10  volts 
across  it  and  that  the  AMPLITUDE  control  is  set  to  +1 
volt.  The  actual  amplitude  is  found  by  substituting  these 
values  in  the  following  equation:

VA  =   V s  -   VL  =   (+ 1)  -   (+10)  =   - 4   volts

2

where  V A  is  the  actual  pulse  amplitude,  Vs  is  the  voltage 
setting  of  the  AMPLITUDE  control,  and  VL  is  the  dc  voltage 
applied  across  the  load.

3.  If  the  load  will  not  terminate  the  50 Q  output  of  the 

Type  109  Pulse  Generator  (because  it  is  not  practical  or 

possible),  then  it  will  be  desirable  to  use  a  50-ohm  coaxial 
lead  (between  the  Type  109  and  the  load)  which  is  long 

enough  to  delay  the  load’s  reflection  until  after  the  time 
of  interest.  The  reflection  will  appear  at  a  time  equal  to 
twice  the  output  lead  delay  plus  the  pulse  length.

Some  representative  test  systems  involving  the  Type  109 

and  other  related  equipment  are  described  and  illustrated 

in  this  portion  of  the  manual.  The  systems  to  be  described, 
as  mentioned  earlier,  may  be  used  as  a  basis  for  the  de­
velopment  of  other  more  specialized  systems  required  by 
specific  applications.

Using  the  Type  109  With  Sampling  Oscillo­
scopes

One  of  the  primary  applications  of  the  Type  109  Pulse 

Generator  is  to  use  it  for  checking  and  calibrating  sampling 
oscilloscopes  which  have  internal  triggering  capabilities. 
Since  this  application  is  adequately  covered  in  the  instruc­
tion  manual  for  the  sampling  oscilloscope  involved,  no  de­
tailed  explanation  will  be  provided  here.

In  the  usual  application  the  Type  109  is  used  to  drive 

a  test  device  so  the  output  from  the  device  can  be  ob­
served  and  measured  on  the  crt  screen  of  the  sampling 
oscilloscope.  Fig.  3-2  shows  how  the  connections  for  this 
application  are  made.

In  other  similar  applications,  using  this  setup,  the  test 

device  could  be  a  test  fixture. 

An  example  of  a  test 

fixture  that  can  be  used  is  the  Type  290  Transistor  Switch­
ing  Time  Tester,  available  through  your  Tektronix  Field 

Office.

Fig.  3-3  illustrates  a  sampling  test  setup  where  the  de­

vice  under  test  is  inserted  in  series  with  the  charge  line. 
A  clear  picture  of  transmission-line  characteristics  can  be 
made  using  this  setup. 

The  presence  of  discontinuities 

along  a  transmission  line  can  be  determined  while  the  line 
is  under  study  by  means  of  the  oscilloscope  display.

The  Type  109  when  used  in  conjunction  with  a  sampling 

oscilloscope  provides  an  excellent  means  for  measuring  the 
impedances  of  certain  devices  and  cables.  In  an  application

3-2

Содержание TYPE 109

Страница 1: ...ERATOR S A f 7 Tektronix Inc S W M illikan W ay P O Box 500 Beaverton Oregon Phone Ml 4 0161 Cables Tektronix Tektronix International A G Terrassenweg 1A Zug Switzerland PH 042 49192 Cable Tekintag Zug Switzerland Telex 53 574 070 299 563 ...

Страница 2: ...ectly to the field there fore all requests for repairs and replace ment parts should be directed to the Tek tronix Field Office or Representative in your area This procedure will assure you the fastest possible service Please include the instrument Type and Serial number with all requests for parts or service Specifications and price change priv ileges reserved Copyright jjP 11963 by Tektronix Inc...

Страница 3: ...TENTS Section 1 W arranty Characteristics Section 2 Operating Instructions Section 3 Applications Section 4 Circuit Description Section 5 Maintenance Section 6 Calibration Section 7 Parts List and Diagram ...

Страница 4: ...PULSE POLARITY T H WER flU R N OFF IO EXTEND MERCURY SWITCH UFE PULSE GENERATOR RISETIME 0 25 NANOSEC EXT POWER OR MONITOR AMPLITUDE 25 50 n 5G V CHG UNS 1 0 5 EXT PWR Type 109 ...

Страница 5: ...risetime is illustrated in Figs 1 1 and 1 2 Fig 1 2 W aveform showing the Type 109 pulse displayed on a Tektronix Type 661 Sam p lin g Oscilloscope Combined risetime of the system between 1 0 and 9 0 am plitude levels is less than 0 4 nanoseconds RISETIM E LESS THAN 0 2 5 nsec 1 nsec Fig 1 1 A double exposure photograph of the output pulse from the Type 109 no external charge lin e and a 1 g igacy...

Страница 6: ...lent Sweep Rate 5 zsec cm Sampling Oscilloscope Type 661 Fig 1 6 Sam e conditions as Figs 1 4 and 1 5 except that the equivalent sweep rate is 1 nsec cm Fig 1 4 W aveform produced by using the extern al charge net w ork supplied as a standard accessory The network connects to one of the 50 12 CH G LIN E connectors on the Type 109 and grounds the unused connector Repetition Rate Infernally adjustab...

Страница 7: ...voltages of the same p olarity Vertical Deflection Factor 9 5 v cm Sweep R ate 5 nsec cm Real Tim e O scilloscope Type 519 Fig 1 9 Double exposure photograph shows that sim ilar condi tions as those in Fig 1 8 w ere used except the external charge voltages are of opposite polarities Output Impedance 50 ohms Power Requirements Line Voltage 105 to 125 volts or 210 to 250 volts 50 to 800 cycles Power...

Страница 8: ...NOTES ...

Страница 9: ...cond The risetime of the pulses is less than 0 25 nanosecond the polarity can be selected and both the amplitude and dura tion are variable The Type 109 is intended for use with fast rise sampling equivalent time systems or conventional real time oscillo scopes The Type 109 is fully transistorized except for a VR tube and requires no warmup time before operating As soon as the POWER ON switch is t...

Страница 10: ...per impedance match The output pulse must be applied through high quality 50 ohm cables or suitable impedance matching devices to keep losses down and maintain the waveform Use RG 8A U for signal connections If a signal delay cable is needed use the Type 113 Delay Cable The only excep tions are the cables used to supply external power to the EXT POWER OR MONITOR connectors to charge the lines The ...

Страница 11: ...ines which are used to generate the output pulses are charged by the internal 100 volt power supply of the Type 109 In these applica tions the pulse amplitude is controlled by the VOLTAGE RANGE and AMPLITUDE controls The VOLTAGE RANGE control determines the range of adjustment of the AMPLI TUDE control The scale of the AMPLITUDE control when used with the setting of the VOLTAGE RANGE control indic...

Страница 12: ...NOTES ...

Страница 13: ...ltage changes from 90 to 10 of the falling portion of the waveform Pulse Width or Duration tw the time duration of the pulse measured between the 50 amplitude levels of the rising and falling portions of the waveform Time Delay td the time interval between the beginning of the input pulse t 0 and the time when the rising portion of the output pulse attains an arbitrary amplitude of 10 above the ba...

Страница 14: ...erator 50fi OUTPUT connector 2 If the pulse is applied to a 50Cl load which has a dc potential across it the actual amplitude of the pulse is the voltage set by the AMPLITUDE control less one half the dc voltage across the load Do not allow more than 200 volts dc to be applied to the Type 109 Pulse Generator 500 OUTPUT connector This limit will keep the internal com ponents of the Type 109 from be...

Страница 15: ...n of the waveform due to the 125 ohm section is about 60 as high as the first portion of the waveform due to the 50 ohm cable The duration of the Type 109 waveform due to the 125 ohm cable is twice the delay time of the cable so it is evident from the picture that the true delay time of the 125 ohm cable used is actually 5 nsec In Fig 3 4 the relative amplitude of the portions of the waveform bear...

Страница 16: ...pen or shorted to coax shield Cable or Component under test 50 S3cable Used as a reference impedance 66 7 Q W v lOOfi 1 Vi w Dividing Pad To 50 Input of Oscilloscope All Resistors 1 Vi watt Fig 3 5 Three w ay dividing pad test circuit for m easuring im pedance by reflection As an alternate method you can construct a dividing pad such as the one shown in Fig 3 5 This pad overcomes a disadvantage of...

Страница 17: ... results that can be expected When the setup is working properly the device under test can then be inserted into the signal line and the output from the test device observed The following factors pertaining to the vertical deflection plate system will be considered dc operating potential of the plates lead inductance deflection plate capacitance transit time limitations delay lines and deflection ...

Страница 18: ...g the equation in Fig 3 8 Make R2 the same value as R l Since the deflection plates are placed close to the path of the electron beam a small amount of current will flow in the deflection plate circuits This current flow varies nonlinearly with the beam position The values of the re sistors R3 and R4 must be selected to keep the current flow from producing a large voltage drop at the deflection pl...

Страница 19: ...he pulse rise and fall times are limited by the bandwidth of the vertical amplifier Fig 3 10 shows the setup which was used to apply the Type 109 pulse to the vertical deflection plates through a Deflection Plate Connector Part No 013 017 The result ant waveform is shown in the same illustration The deflec tion plate connector circuit that was used is similar to the one shown in Fig 3 11 except C3...

Страница 20: ...f R G 8 A U cable as a signal d elay line causes rolloff and a g rad ual upward slope of the w aveform Fig 3 1 1 Circuit diagram of actual circuit used to obtain the w aveform shown in Fig 3 12 Com ponents C3 and R5 aid in sharpening the leading corner and flattening the top of the w aveform to offset the slight deterioration caused by using a long sig nal d elay line 3 8 ...

Страница 21: ...LE CABLE EXT TRIG O O O O INPUT o 6 7 V C M DEFLECTION PLATE CO N N ECTO R Device under test can be inserted at either point 2 0 N SEC CM Fig 3 12 Note the improved w aveform response obtained by using two Type 113 D elay Cables as a signal d elay line and by adding C3 and R5 to the deflection plate connector network 3 9 ...

Страница 22: ...NOTES ...

Страница 23: ... are con nected in parallel for 117 volt operation and in series for 234 volt operation A filter network consisting of T600 C600 and C601 is used to reduce power line transients Thermal cutout TK601 protects the Type 109 against excessively high interior temperature If the temperature inside the instrument be comes too high the contacts of TK601 will open and turn off the power applied to the prim...

Страница 24: ...rive voltage on the transformer primary Since the number of turns of T750 are fixed the multi vibrator frequency can be changed by varying the drive voltage To accomplish this FREQUENCY control R614 when adjusted changes the operating voltage on transistors Q725 and Q735 By changing the transistor operating volt ages core saturation time changes thus changing the multi vibrator frequency By adjust...

Страница 25: ...RGE LINE 2 WAVEFORM MONI TORED AT THE CHG LINE 2 CONNECTOR ALTERNATE PULSE WAVEFORMS AT THE 50 ß OUTPUT CONNECTOR Fig 4 3 Charge and discharge sequence using two separate different length charge lines For this illustration CH ARGE LIN E 2 is twice as long as CHARGE LINE 1 the Type 109 output am plitude is f 50 volts and the nom inal repetition rate of the pulses generated from each contact is 3 2 ...

Страница 26: ...e to capacitive coupling of backwave coupling of backwave Reed closes Contact Reed closes Contact Reed closes Contact with left opens with right opens with left opens contact contact contact Fig 4 4 Charge and discharge sequence using the same charge line Type 109 output am plitude is 5 0 volts and the nom inal repetition rate is 6 4 0 cps 4 4 ...

Страница 27: ...s originally charged to 100 volts then a 50 volt output pulse is obtained A 50 volt pulse also travels down the charge line toward the open end called the back wave As the pulse reaches the open end it is reflected in phase and returns toward the mercury switch As the reflected pulse reaches the mercury switch the charge in the cable drops to essentially zero and the output pulse ends The duration...

Страница 28: ...NOTES ...

Страница 29: ...loose or broken connections damaged con nectors improperly seated VR tube or transistor scorched wires or resistors or broken ceramic terminal strips For most visual troubles the remedy is apparent however particular care must be taken when heat damaged com ponents are detected Overheating of parts is often the result of other less apparent defects in the circuit It is essential that you determine...

Страница 30: ... the solder in the slot and reduces the amount of heat required It is important to use as little heat as is possible and not to twist the soldering iron Twisting or turning the soldering iron in the slot can chip or break the ceramic strip Ceramic Terminal Strips To remove a ceramic terminal strip unsolder all com ponents and connections then pry the strip with yokes attached out of the chassis As...

Страница 31: ...hen make the checks that are listed in the second column until you find the exact cause of the trouble Table 5 1 does not list every possible symptom or check but it does have a few references which direct you to Tables 5 2 and 5 3 These last two tables are arranged so that they can be used individually to perform quick checks on the operation of specific circuits Table 5 3 is a guide for troubles...

Страница 32: ...Maintenance Type 109 70 T D 3 Q Q Q IQ H t Q 3 g n Q_ S Q C D o_ Q Q C D Q 3 Q U o_ D Q 3 o c a D w 5 4 SYMPTOMS ...

Страница 33: ...TABLE 5 2 continued Maintenance Type 109 co i n ca a Q D to U4 o CL 0 1 uo o 5 5 W h e n c o n n e c t e d t o 6 0 c p s m a i n ...

Страница 34: ...NOTES ...

Страница 35: ...a Tektronix Type 540 Series Oscilloscope with a Type L Plug In Unit a Type P6000 10X Attenuator Probe and a Type P6027 IX Attenuator Probe Sustitute specifications Bandpass 30 me with the 10X probe deflection factor at least 50 mv per cm and at least 5 mv per cm at reduced band pass 2 Sampling test oscilloscope such as a Tektronix Type 561 Oscilloscope with a Type 3S76 and a Type 3T77 Plug In Unit...

Страница 36: ...upply Test Points Ohmmeter Range Approx Resistance Readings PULSE POLARITY Switch Setting 100V XI k 7k 18k 100V Xlk 7k 18k 17V R10 18Q 30Q or Fig 6 3 shows the physical locations of these test points Reverse the ohmmeter leads to obtain both readings CALIBRATION PROCEDURE Introduction The equipment used in this calibration procedure is the same as that specifically called out in the Equipment Requ...

Страница 37: ...r 234 volts e Disconnect the VOM and the IX probe 3 Check Frequency Range and Amplitude a Set the front panel controls on the conventional test oscilloscope to the following settings Input coupling DC Volts Cm 1 Volt Variable Volts Cm Calibrated Stability Preset Triggering Mode AC Triggering Slope Time Cm 1 Millisec Variable Time Cm Calibrated Horizontal Display Normal X I b Disconnect the 1 X pro...

Страница 38: ... slight horizontal jitter due to mechan ical closure of the reed and a spike on the leading corners of the waveform due to the tester s lead lengths g Vary the autotransformer between 105 and 125 or 210 and 250 volts and check the waveform for the following characteristics 1 Check for a clean steady waveform display similar to the one shown in Fig 6 6a The closure inter val for one set of contacts...

Страница 39: ...ange i Disconnect the mercury switch tester leads and the 10 X probe from the Type 109 j Check that the autotransformer is set for an output of 117 or 234 volts 5 Check Output Amplitude a Set the Type 109 AMPLITUDE control to 50 and the VOLTAGE RANGE switch to 50 set the PULSE POLAR ITY switch to b Connect a 50 ohm 20 nsec cable to the 50 Q CHG LINE 1 and 50 Q CHG LINE 2 connectors c Connect a 8 5...

Страница 40: ... Trigger pint Set the Type 109 controls to these settings AMPLITUDE 10 VOLTAGE RANGE 5 PULSE POLARITY Fig 6 9 M easuring the risetim e Equivalent sweep rate is 0 2 nsec cm c Connect a 5 nsec cable between the 50 Q OUTPUT connector on the Type 109 and Input A on the sam pling oscilloscope d Advance the oscilloscope Trigger Sensitivity control until a sweep trace appears on the screen Use the A Posi...

Страница 41: ...K counter sunk P pico or ICH1 2 dia diameter PHS pan head steel div division piv peak inverse voltage EMC electrolytic metal cased piste plastic EMT electroyltic metal tubular PMC paper metal cased ext external poly polystyrene f farad Prec precision F 1 focus and intensity PT paper tubular FHS flat head steel PTM paper or plastic tubular molded Fil HS fillister head steel RHS round head steel g o...

Страница 42: ...f 1 3 132 002 Subpart of Mercury Switch Assembly see Page ref 1 4 334 679 1 TAG metal serial no insert 5 210 473 1 NUT switch 12 sided 210 902 1 WASHER 470 ID x 21 32 OD 354 055 1 RING locking switch 23 32 OD x 15 32 ID 6 366 145 1 KNOB voltage range 210 413 1 NUT hex 3 8 32 x 1 2 210 840 1 WASHER 390 ID x 9 16 OD 210 013 1 L0CKWASHER int 3 8 x 11 16 7 366 145 1 KNOB Amplitude 210 413 1 NUT hex 3 ...

Страница 43: ...2 1 CONNECTOR chassis mt coaxial female Consisting Of 129 041 1 POST ground 4 40 thread one end 200 185 1 COVER 3 wire motor base 210 003 2 LOCKWASHER ext 4 210 551 2 NUT hex 4 40 x 1 4 211 015 1 SCREW 4 40 x 1 2 RHS 214 078 2 PIN connecting motor base 377 041 1 INSERT black urea 386 933 1 PLATE motor base mounting Mounting Hardware not included 211 552 2 SCREW 6 32 x 2 BHS 210 457 2 NUT keps 6 32...

Страница 44: ...Parts List Type 109 RIGHT SIDE 7 4 ...

Страница 45: ...et nylon Mounting Hardware 211 019 2 SCREW 4 40 x 1 RHS 210 949 2 WASHER 9 64 ID x 1 2 0D 119 006 1 MAGNET pocket 211 512 1 SCREW 6 32 x 1 2 FHS 343 075 1 CLAMP switch toroid Mounting Hardware 211 564 2 SCREW 6 32 x 3 8 hex socket head cap Mounting Hardware for Switch not included 210 457 4 NUT keps 6 32 x 5 16 2 344 014 1 CLIP spring tube 3 210 413 2 NUT hex 3 8 32 x 1 2 210 840 2 WASHER 390 ID x...

Страница 46: ...Parts List Type 109 LEFT SIDE 7 6 ...

Страница 47: ...1 579 4 POST terminal transistor mounting 210 006 4 LOCKWASHER int 6 210 407 4 NUT hex 6 32 x 1 4 386 978 101 529 2 PLATE mica transistor insulating 387 345 530 2 PLATE insulator anodized alum 210 900 4 WASHER bakelite transistor mounting not shown 210 804 101 579 4 WASHER 8S x 3 8 not shown 210 008 101 579 4 LOCKWASHER int 8 not shown 210 409 101 579 4 NUT hex 8 32 x 5 16 not shown 210 202 580 4 ...

Страница 48: ...Parts List Type 109 CABINET 7 8 ...

Страница 49: ...PA RT N O SERIA L N O EFF D ISC 1 017 060 017 067 101 210 209 CHARGING NETWORK CHARGING NETWORK D ESC RIPTIO N 2 017 502 3 50 O 5 NSEC CABLE RG 8 AU 3 103 013 4 161 010 1 ADAPTER power cord 3 wire to 2 wire 1 CORD power 16 ga 8 ft 3 wire 7 9 ...

Страница 50: ...1 3 ...

Страница 51: ... C661 A B 290 040 2 x 40 if EMC 250 v C679 283 008 1 if Disc Type 500 v C696 283 000 001 if Disc Type 500 v C750 Use 283 057 1 if Disc Type 200 v Diodes D602A B 152 035 2 1N563A Silicon D612 152 064 i o v y4 w 10 Zener D662A B C D 152 047 4 1N2862 or equal Silicon Fuses F601 159 025 5 Amp 3AG Fast Bio 117 v operation 50 60 cycle 159 028 25 Amp 3AG Fast Bio 234 v operation 50 60 cycle Resistors Res...

Страница 52: ...6 473 47 k 2 w R752 302 473 47 k y2 w R753 302 472 4 7 k y2 w R756 302 473 47 k Vi w R757 306 473 47 k 2 w R758 302 472 4 7 k V i w Switches SW601 Unwired 260 199 Wired Toggle SPST POWER ON SW679 260 212 Slide PULSE POLARITY SW690 260 410 262 419 Rotary VOLTAGE RANGE SW750 TK601 260 334 260 413 Mercury Switch Checked Thermo cut out 175 F Transformers T600 120 164 Toroid 3T TD12 T601 120 239 L V Po...

Страница 53: ...uit and component improvements to our instruments as soon as they are developed and tested Sometimes due to printing and shipping require ments we can t get these changes immediately into printed manuals Hence your manual may contain new change information on following pages If it does not your manual is correct as printed ...

Страница 54: ... 3 0 3 3 3 3 3 3 3 3 3 3 3 ...

Страница 55: ...TYPE 109 PARTS LIST CORRECTION CHANGE TO SW750 260 0282 02 Mercury Switch Checked M9UL1 L65 ...

Страница 56: ...f 1 Li _r S s s n s i i j n s n j i ...

Отзывы: