Spektrum AR9200
5
Spektrum AR9200
6
It’s important to select a battery(s) that has more than adequate capacity
to provide the necessary flight time. Our staff has been recording in-flight
data to determine typical current consumption of aircraft in flight.
Following are two graphs that illustrate the in-flight current draw of the
radio system.
Note: Current draws may vary depending on your servos, installation and flying style.
The following setup is shown as a worst-case scenario indicative of some
aerobatic pilots’ setups. It is not recommended to use this setup without
proper voltage regulation for your servos.
Airplane - 40% YAK
Servos - 9-JR8711’s 1-8317 (throttle)
Batteries - Two 4000mAh 2-cell 7.4-volt LiPo’s
Regulator - None
Note: JR8711’s and 8317’s are rated at a maximum of 6-volt 5-cell use. Using higher
voltages will void the warranty.
Engine - DA150
Weight - 40 lbs
Flight envelope - Hard 3D
Average current - 2.62 amps
Peak current - 17.8 amps
Milliamps used per 10-minute flight - 435mAh
Battery Capacity
File: JasonNoll.FDR Session:All Sessions
Seconds
350
300
250
200
150
100
50
Pa
ckA
mp
s_
A
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PackAmps_A: Min 0.00 Max 17.80 Avg 2.62
450
400
0
In the example above, the average current was 2.62 amps, which calculates
to 435mAh per 10 minutes (typical flight length). It’s recommended that
only 60% of the available capacity be used to ensure plenty of reserve
battery capacity. In this example using two 4000mAh batteries (8000mAh
total capacity) x 60%= 4800mAh (available usable capacity) divided by the
capacity used per 10-minute flight, 435mAh would allow up to 11 flights, of
10 minutes each.
Airplane - 33% Sukhoi
Servos - 7-JR8611’s 1-8317 (throttle)
Batteries - 1- 4000mAh 2-cell 7.4-volt LiPo
Regulator - 6 volt
Engine - DA100
Weight - 26 lbs
Flight envelope - Moderate 3D
Average current - .82 amps
Peak current - 6.92 amps
Milliamps used per 10-minute flight - 137mAh
Battery Capacity (continued)
File: sukhio Session:All Sessions
PackAmps_A: Min 0.00 Max 6.92 Avg 0.82
Seconds
450
400
350
300
250
200
150
100
50
0
Pa
ckA
mp
s_
A
7
6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
Recommended Guidelines for Battery Capacity
40-45% Aerobatic aircraft w/ 9-12 high-current servos: 4000–8000mAh
33-35% Aerobatic aircraft w/ 7-10 high-current servos: 3000–6000mAh
25% Quarter Scale Aerobatic aircraft w/ 5-7 high-current servos:
2000–4000mAh
Jets - BVM Super BANDIT, F86, Euro Sport, etc.: 3000–6000mAh
Giant-Scale Jets - BVM Ultra Bandit:4000–8000mAh
Scale aircraft - The varieties of scale aircraft and the accessories they use
vary tremendously making it difficult to give capacity recommendations for
these types of aircraft. Using the previously mentioned aerobatic guidelines
relative to the size and number of servos used will provide a conservative
capacity for your scale aircraft. As always, check battery charge condition
before each flight.