Reflection
Most surfaces produce a diffuse reflection of the laser beam in all directions. The struc‐
ture (smooth or rough), shape (flat or curved), and color (light or dark) of the surface
determine how well the laser beam is reflected.
On very rough surfaces, part of the energy is lost due to shadowing. Curved surfaces
produce a higher diffusion. Dark surfaces reflect the laser beam worse than light ones
(brilliant white plaster reflects approx. 100% of the light, while black foam rubber
reflects approx. 2.4%). The aforementioned surface characteristics can reduce the
scanning range of the device, in particular for surfaces with low remission values.
Figure 7: Reflection of light on the surface of the object
Angle of reflection
The angle of reflection corresponds to the angle of incidence. If the laser beam hits a
surface at right angles, the energy is optimally reflected. If the laser beam hits a sur‐
face at an oblique angle, energy and range are lost accordingly.
Figure 8: Angle of reflection
Retroreflection
If the reflective energy is greater than 100%, the beam is not reflected diffusely in all
directions; instead it is reflected in a targeted way (retroreflection). Thus a large part of
the emitted energy can be received by the laser distance measurer. Plastic reflectors
(cat’s eyes), reflective tape, and triple prisms have these properties.
Figure 9: Retroreflection
PRODUCT DESCRIPTION
3
8024355/15I9/2019-09-30 | SICK
O P E R A T I N G I N S T R U C T I O N S | TiM8xxP
17
Subject to change without notice