58
7.2.2 Copper TIG welding
Since TIG welding is a process characterized by high heat con-
centration, it is particularly suitable for welding materials with
high thermal conductivity, like copper.
For TIG welding of copper, follow the same directions as for TIG
welding of steel or special instructions.
7.3 Continuous wire welding (MIG/MAG)
Introduction
A MIG system consists of a direct current power source, wire
feeder, wire spool, torch and gas.
MIG manual welding system
The current is transferred to the arc through the fusible elec-
trode (wire connected to positive pole); in this procedure the
melted metal is transferred onto the workpiece through the arc
stream. The automatic feeding of the continuous filler material
electrode (wire) is necessary to refill the wire that has melted
during welding.
Methods
In MIG welding, two main metal transfer mechanisms are
present and they can be classified according to the means by
which metal is transferred from the electrode to the work-
piece. The first one, defined “SHORT-ARC”, produces a small,
fast-solidifying weld pool where metal is transferred from the
electrode to the workpiece only for a short period when the
electrode is in contact with the weld pool. In this timeframe,
the electrode comes into direct contact with the weld pool
generating a short circuit that melts the wire which is there-
fore interrupted. The arc then turn on again and the cycle is
repeated (Fig. 1a).
SHORT cycle (a) and SPRAY ARC welding (b)
Another mechanism for metal transfer is called the “SPRAY-
ARC” method, where the metal transfer occurs in the form of
very small drops that are formed and detached from the tip of
the wire and transferred to the weld pool through the arc stream
(Fig. 1b).
Welding parameters
The visibility of the arc reduces the need for the user to strictly
observe the adjustment tables as he can directly monitor the
weld pool.
- The voltage directly affects the appearance of the bead, but
the dimensions of the weld bead can be varied according to
requirements by manually moving the torch to obtain variable
deposits with constant voltage.
- The wire feeding speed is proportional to the welding cur-
rent.
Fig. 2 and 3 show the relationships between the various welding
parameters.
Fig. 2 Diagram for selection the of best working characteristic.
Fig. 3 Relationship between wire feeding speed and current
amperage (melting characteristic) according to wire diameter.
Содержание Genesis 3200 GSM
Страница 32: ...32...
Страница 90: ...90...
Страница 120: ...120...
Страница 150: ...150...
Страница 180: ...180...
Страница 210: ...210...
Страница 325: ...1 1 1 10 C 40 C 14 F 104 F 25 C 55 C 13 F 131 F 50 40 C 40 00 C 90 20 C 68 F 2000 6500 1 2 10 MIG MAG 325...
Страница 326: ...326 1 3 1 4 11 35 1 5 1 6...
Страница 327: ...327 8 1 7 EN IEC 60974 10 B A A EN60974 10 A pace maker Zmax Ssc Point of Commom Coupling PCC...
Страница 328: ...1 8 IP S IP23S 12 5 mm 60 2 2 1 2 2 10 2 3 400V 230V 15 15 2 1 5 328...
Страница 329: ...329 2 4 MMA 3 4 1 2 WF TIG 4 3 TIG 5 6 7 8 9 10 MIG MAG CAN BUS RC 11 12 13 o 14 15 16 17 A4 MIG 18 19 20 21...
Страница 344: ...5 6 Reset 344...
Страница 345: ...345 encoder...
Страница 346: ...346...
Страница 347: ...347 7 7 1 MMA Hot Start Arc Force antisticking 7 2 TIG TIG Tungsten lnert Gas 3370 C H F lift...
Страница 349: ...349 7 2 2 TIG TIG TIG TIG 7 3 MIG MAG MIG SHORT ARC 1a SHORT a SPRAY ARC b SPRAY ARC 1b 2 3 2 3 1a 1b...
Страница 352: ...352...
Страница 355: ...355 11 Schema Diagram Schaltplan Sch ma Esquema Diagrama Schema kopplingsschema Oversigt Skjema Kytkent kaavio...
Страница 357: ...357...
Страница 360: ...360...