188
Caso o eléctrodo permaneça colado à peça a soldar, a corrente
de curto-circuito deve ser reduzida para o valor mínimo (“antis-
ticking”).
Execução da soldadura
O ângulo de inclinação do eléctrodo varia consoante o núme-
ro de passagens; o movimento do eléctrodo é, normalmente,
efectuado com oscilações e paragens nos lados do rebordo, de
modo a evitar uma acumulação excessiva de material de adição
no centro.
Remoção da escória
A soldadura por eléctrodos revestidos obriga à remoção da
escória após cada passagem.
A escória é removida com um pequeno martelo ou com uma
escova, se estiver fria.
7.2 Soldadura TIG (arco contínuo)
O processo de soldadura TIG (“Tungsten Inert Gas” - Tungsténio
Gás Inerte) baseia-se na presença de um arco eléctrico aceso
entre um eléctrodo não consumível (tungsténio puro ou em
liga, com uma temperatura de fusão de cerca de 3370° C) e a
peça de trabalho; uma atmosfera de gás inerte (árgon) assegura
a protecção do banho de fusão.
O eléctrodo nunca deve tocar na peça de trabalho, para evitar
o perigo representado pela entrada de tungsténio na junta; por
esse motivo, a fonte de alimentação de soldadura dispõe, nor-
malmente, de um dispositivo de início do arco que gera uma
descarga de alta frequência e alta tensão, entre a extremidade
do eléctrodo e a peça de trabalho. Assim, devido à faísca eléc-
trica que ioniza a atmosfera gasosa, o arco de soldadura começa
sem que haja contacto entre o eléctrodo e a peça de trabalho.
Existe ainda outro tipo de arranque com introduções reduzidas
de tungsténio: o arranque em “lift” (elevação) que não requer
alta frequência mas apenas um curto-circuito inicial, a baixa
corrente, entre o eléctrodo e a peça a soldar; o arco inicia-se
quando o eléctrodo sobe e a corrente aumenta até atingir o
valor de soldadura previamente estabelecido.
Para melhorar a qualidade da parte final do cordão de soldadu-
ra é importante verificar com precisão a descida da corrente de
soldadura e é necessário que o gás flua no banho de fusão por
alguns segundos, após a finalização do arco.
Em muitas condições operativas é útil poder dispor de 2 corren-
tes de soldadura predefinidas e poder passar facilmente de uma
para outra (BILEVEL).
Polaridade de soldadura
D.C.S.P. (Direct Current Straight Polarity - Polaridade Directa
de Corrente Contínua)
Esta é a polaridade mais utilizada e assegura um desgaste limi-
tado do eléctrodo (1), uma vez que 70 % do calor se concentra
no ânodo (ou seja, na peça).
Com altas velocidades de avanço e baixo fornecimento de calor
obtêm-se banhos de solda estreitos e fundos.
Os materiais são, maioritariamente, soldados com esta polarida-
de, à excepção do alumínio (e respectivas ligas) e ao magnésio.
D.C.R.P. (Direct Current Reverse Polarity - Polaridade Inversa
de Corrente Contínua)
A polaridade inversa é utilizada na soldadura de ligas cobertas
com uma camada de óxido refractário, com uma temperatura
de fusão superior à dos metais.
Não se podem utilizar correntes elevadas, uma vez que estas
provocariam um desgaste excessivo do eléctrodo.
D.C.S.P.-Pulsed (Direct Current Straight Polarity Pulsed –
Pulsação de Polaridade Directa de Corrente Contínua)
A adopção de uma corrente contínua pulsada permite controlar
melhor o banho de fusão, em condições operacionais específicas.
O banho de fusão é formado pelos impulsos de pico (Ip),
enquanto a corrente de base (Ib) mantém o arco aceso; isto
facilita a soldadura de pequenas espessuras, com menos defor-
mações, melhor factor de forma e consequente menor perigo
de formação de fendas a quente e de introduções gasosas.
Com o aumento da frequência (média frequência) obtém-se um
arco mais estreito, mais concentrado e mais estável, o que per-
mite uma melhor qualidade de soldadura de espessuras finas.
7.2.1 Soldadura TIG de aço
O procedimento TIG é muito eficaz na soldadura dos aços, quer
sejam de carbono ou resultem de ligas, para a primeira passa-
gem sobre os tubos e nas soldaduras que devam apresentar bom
aspecto estético. É necessária polaridade directa (D.C.S.P.).
Preparação dos bordos
Torna-se necessário efectuar uma limpeza cuidadosa bem como
uma correcta preparação dos bordos.
Escolha e preparação do eléctrodo
Aconselhamos o uso de eléctrodos de tungsténio toriado (2%
de tório-coloração vermelha) ou, em alternativa, eléctrodos de
cério ou lantânio com os seguintes diâmetros:
Ø eléctrodo (mm) limites de corrente (A)
1.0
15÷75
1.6
60÷150
2.4
130÷240
O eléctrodo deverá ser afiado conforme indica a figura.
Содержание Genesis 3000 MTE
Страница 34: ...34...
Страница 128: ...128...
Страница 160: ...160...
Страница 192: ...192...
Страница 224: ...224...
Страница 254: ...254...
Страница 347: ...1 1 1 10 C 40 C 14 F 104 F 25 C 55 C 13 F 131 F 50 40 C 40 00 C 90 20 C 68 F 2000 6500 1 2 10 MIG MAG 347...
Страница 348: ...348 1 3 1 4 11 35 1 5...
Страница 349: ...349 1 6 8 1 7 EN IEC 60974 10 B A A EN60974 10 A pace maker Zmax Ssc Point of Commom Coupling PCC...
Страница 350: ...1 8 IP S IP23S 12 5 mm 60 2 2 1 GT 500 2 2 10 2 3 400V 230V 15 15 2 1 5 350...
Страница 353: ...353 3 3 3 4 LCD 1 2 3 4 5 1 m min 22 m min Default 1 0 m min 6 7 3 5 MMA TIG DC MIG MAG 1 1a 1b 1c 1d 1e 1f 1g...
Страница 361: ...361 1 2 3 2 1 3 1 9 9 encoder 4 encoder 1 2 1 2...
Страница 366: ...3 13 1 O I 2 CAN BUS RC 3 MIG MAG 4 TIG 5 3 14 1 MIG 2 MIG MAG MIG 3 TIG 4 TIG 5 TIG 6 CAN BUS RC 7 Push Pull 366...
Страница 369: ...369 5 6 Reset...
Страница 370: ...370 encoder...
Страница 371: ...371...
Страница 372: ...372 7 7 1 MMA Hot Start Arc Force antisticking 7 2 TIG TIG Tungsten lnert Gas 3370 C H F lift...
Страница 374: ...374 7 3 MIG MAG MIG SHORT ARC 1a SHORT a SPRAY ARC b SPRAY ARC 1b 2 3 2 3 1a 1b...
Страница 380: ...380 GENESIS 3000 PMC GENESIS 3000 SMC...
Страница 388: ...388...