Datasheet, Volume 1
13
Electrical Specifications
2
Electrical Specifications
2.1
Intel
®
QuickPath Interconnect (Intel
®
QPI)
Differential Signaling
The processor provides an Intel QPI port for high speed serial transfer between other
Intel QPI-enabled components. The Intel QPI port consists of two unidirectional links
(for transmit and receive). Intel QPI uses a differential signalling scheme where pairs of
opposite-polarity (D_P, D_N) signals are used.
On-die termination (ODT) provided on the processor silicon and termination is to V
SS
.
Intel chipsets also provide ODT; thus, eliminating the need to terminate the Intel QPI
links on the system board.
Intel strongly recommends performing analog simulations of the Intel QPI interface.
illustrates the active ODT. Signal listings are included in
and
. See
for the pin signal definitions. All Intel QPI signals are in the
differential signal group.
2.2
Power and Ground Lands
For clean on-chip processor core power distribution, the processor has 210 VCC pads
and 119 VSS pads associated with V
CC
; 8 VTTA pads and 5 VSS pads associated with
V
TTA
; 28 VTTD pads and 17 VSS pads associated with V
TTD
, 28 VDDQ pads and 17 VSS
pads associated with V
DDQ
; and 3 VCCPLL pads. All VCCP, VTTA, VTTD, VDDQ, and
VCCPLL lands must be connected to their respective processor power planes, while all
VSS lands must be connected to the system ground plane. The processor VCC lands
must be supplied with the voltage determined by the processor Voltage IDentification
(VID) signals.
specifies the voltage level for the various VIDs.
2.3
Decoupling Guidelines
Due to its large number of transistors and high internal clock speeds, the processor is
capable of generating large current swings between low and full power states. This may
cause voltages on power planes to sag below their minimum values if bulk decoupling is
not adequate. Larger bulk storage (C
BULK
), such as electrolytic capacitors, supply
current during longer lasting changes in current demand; such as, coming out of an idle
condition. Similarly, capacitors act as a storage well for current when entering an idle
Figure 2-1. Active ODT for a Differential Link Example
T
X
R
X
R
TT
R
TT
R
TT
R
TT
Signal
Signal
Содержание BX80613I7980
Страница 8: ...8 Datasheet Volume 1...
Страница 12: ...Introduction 12 Datasheet Volume 1...
Страница 34: ...Electrical Specifications 34 Datasheet Volume 1...
Страница 88: ...Thermal Specifications 88 Datasheet Volume 1...
Страница 94: ...Features 94 Datasheet Volume 1...