BASIC OPERATION AND FEATURES
SX TRANSISTOR CONTROL
Page
4
Section 1. INTRODUCTION
Section 1.1 Motor Characteristics
The level of sophistication in the controllability of traction
motors has changed greatly over the past several years.
Vehicle manufacturers and users are continuing to expect
more value and flexibility in electric vehicle motor and
control systems as they are applied today. In order to
respond to these market demands, traction system
designers have been forced to develop new approaches to
reduce cost and improve functions and features of the
overall system. Development is being done in a multi-
generational format that allows the market to take
advantage of today’s technology, while looking forward to
new advances on the horizon. GE has introduced a second
generation system using separately excited DC shunt
wound motors. The separately excited DC motor system
offers many of the features that are generally found on the
advanced AC systems. Historically, most electric vehicles
have relied have on series motor designs because of their
ability to produce very high levels of torque at low speeds.
But, as the demand for high efficiency systems increases,
i.e., systems that are more closely applied to customers’
specific torque requirements, shunt motors are now often
being considered over series motors. In most applications,
by independently controlling the field and armature
currents in the separately excited motor, the best attributes
of both the series and the shunt wound motors can be
combined.
NO LOAD
CU
RRE
NT
FU
LL
LOAD
CU
RRENT
STA
RTI
NG
CU
RR
EN
T
ARMATURE CURRENT
Figure 1
SPEED
TORQUE
As shown in from the typical performance curves of Figure
1, the high torque at low speed characteristic of the series
motor is evident.
In a shunt motor, the field is connected directly across the
voltage source and is therefore independent of variations in
load and armature current. If field strength is held constant,
the torque developed will vary directly with the armature
current. If the mechanical load on the motor increases, the
motor slows down, reducing the back EMF (which depends
on the speed, as well as the constant field strength). The
reduced back EMF allows the armature current to increase,
providing the greater torque needed to drive the increased
mechanical load. If the mechanical load is decreased, the
process reverses. The motor speed and the back EMF
increase, while the armature current and the torque
developed decrease. Thus, whenever the load changes, the
speed changes also, until the motor is again in electrical
balance.
In a shunt motor, the variation of speed from no load to
normal full load on level ground is less than 10%. For this
reason, shunt motors are considered to be constant speed
motors (Figure 2).
NO
LO
AD C
URRE
NT
FU
LL
LO
AD C
URRE
NT
STARTING CU
RRE
NT
ARMATURE CURRENT
Figure 2
SPEED
TORQUE
In the separately excited motor, the motor is operated as a
fixed field shunt motor in the normal running range.
However, when additional torque is required, for example,
to climb non-level terrain, such as ramps and the like, the
field current is increased to provide the higher level of
torque. In most cases, the armature to field ampere turn
ratio can be very similar to that of a comparable size series
motor (Figure 3.)
NO
LO
AD C
URRE
NT
FU
LL
LO
AD C
URRE
NT
ST
ART
ING
CU
RRE
NT
ARMATURE CURRENT
Figure 3
SPEED
TORQUE
Aside from the constant horsepower characteristics
described above, there are many other features that
provide increased performance and lower cost. The
September 2004