BASIC OPERATION AND FEATURES
SX TRANSISTOR CONTROL
Page
11
January 1999
•
=
Monitor existing system status codes for both traction
and pump controls. Monitor intermittent random status
codes.
•
=
Monitor battery state of charge, if available.
•
=
Monitor hourmeter reading on traction and pump
controls. Monitor or adjust the control functions.
Section 2.3.6 RS 232 Communication Port
This serial communication port can be used with
Interactive Custom Dash Displays to allow changes to
vehicle operating parameters by the operator. Or, it can be
used by service personnel to dump control operating
information and settings into a personal computer program.
Section 2.3.6.a Interactive Dash Display
Modes
The Interactive Custom Dash Display allows the operator to
select the best vehicle performance for changing factory
(task) conditions. There are four (4) "operator interaction
modes" that can be selected by depressing a push button
on the dash display.
From the Dash Display, the operator may select any of four
pre-set interactive modes consisting of (4) Controlled
Acceleration levels, (4) Field Weakening levels and (4)
Speed Limits.
These interactive modes are "pre-set" using the Handset
(Functions 48-62) or a personal computer (Functions 97-
112). This feature allows the operator to select the best
vehicle performance for changing factory (task) conditions.
Section 2.3.7 Circuit Board Coil Driver Modules
Coil drivers are internal to the control card, and are the
power devices that operate the Line, 1A and SP contactor
coils. On command from the control card, these drivers
initiate opening and closing the contactor coils. All driver
modules are equipped with reverse battery protection, such
that, if the battery is connected incorrectly, the contactors
can not be closed electrically.
Section 2.3.8 Truck Management Module (TMM)
The Truck Management Module is a multifunction
accessory card (IC3645TMM7A), or an integral function of
the GE Pump controls when used with the SX Traction
control. The Module provides the OEM the ability to initiate
status codes or operator warning codes to be displayed on
the Dash Display, whenever a normally open switch or
sensor wire provides a signal to the Module.
The TMM Module can be used to display a separate status
code indicating over-temperature of traction motors,
hydraulic motors, or any other device or system that can
activate a switch that closes.
The TMM Module can also be used as a Brush Wear
Indicator (BWI). The Brush Wear Indicator is designed to
detect a "worn out brush" and display a fault code on the
Dash Display to warn maintenance personnel that the
motor brushes need to be replaced before they wear to the
point of causing destructive damage to the motor
commutator surface.
Section 2.4 Hydraulic Pump Control
This hydraulic motor controller consists of the following
features:
•
=
Four speeds, adjustable from O to 100% motor volts.
Fixed speeds actuated by switch closure to negative.
•
=
P1A bypass contactor (if required)
•
=
Variable resistor input (5K-O ohms). Control starts
when input is reduced to below 3.5 volts.
•
=
PMT functions available when a pump contactor is
used.
•
=
Current limit and controlled acceleration adjustable.
•
=
Battery Discharge Indicator interrupt compatible.
Operation of voltage regulator card: This card provides the
basic functions required for controlling the pump control,
optional contactors, and PMT functions. Battery positive is
applied through a main control fuse to the key switch,
energizing the control card power supply input to P1.
When a pump contactor is used, PMT operation is the
same as outlined for the traction controllers.
The four speed (motor volts) reference points P12, P19, P20
AND P21 are selected by connecting these points
independently to battery negative.
The first speed is obtained by closing Speed Limit I (P12) to
control negative. SLl is adjustable by Function 11 using the
Handset to adjust motor voltage from O to 100%. The
specified motor volts will be regulated, however, the
magnitude of motor current will vary depending on the
loading of the vehicle.
The second speed is obtained by closing SL2 (P19) to
control negative. SL2 is adjusted using the Handset and
Function 12 similar to SL1.
The third speed is obtained by closing SL3 (P20) to control
negative. SL3 is adjusted using the Handset and Function
13 similar to SL1.
The fourth speed is obtained by closing SL 4 (P21) to
control negative. SL4 is adjusted using the Handset and