background image

PRELIMINARY

CY7C1333H

Document #: 001-00209 Rev. **

Page 4 of 12

Functional Overview

The CY7C1333H is a synchronous flow-through burst SRAM
designed specifically to eliminate wait states during
Write-Read transitions. All synchronous inputs pass through
input registers controlled by the rising edge of the clock. The
clock signal is qualified with the Clock Enable input signal
(CEN). If CEN is HIGH, the clock signal is not recognized and
all internal states are maintained. All synchronous operations
are qualified with CEN. Maximum access delay from the clock
rise (t

CDV

) is 6.5 ns (133-MHz device).

Accesses can be initiated by asserting all three Chip Enables
(CE

1

, CE

2

, CE

3

) active at the rising edge of the clock. If Clock

Enable (CEN) is active LOW and ADV/LD is asserted LOW,
the address presented to the device will be latched. The
access can either be a Read or Write operation, depending on
the status of the Write Enable (WE). BW

[A:D]

 can be used to

conduct Byte Write operations. 

Write operations are qualified by the Write Enable (WE). All
writes are simplified with on-chip synchronous self-timed write
circuitry. 

Three synchronous Chip Enables (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) simplify depth expansion.
All operations (Reads, Writes, and Deselects) are pipelined.
ADV/LD should be driven LOW once the device has been
deselected in order to load a new address for the next
operation.

Single Read Accesses

A read access is initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE

1

, CE

2

,

and CE

are ALL asserted active, (3) the Write Enable input

signal WE is deasserted HIGH, and 4) ADV/LD is asserted
LOW. The address presented to the address inputs is latched
into the address register and presented to the memory array
and control logic. The control logic determines that a read
access is in progress and allows the requested data to
propagate to the output buffers. The data is available within 6.5
ns (133-MHz device) provided OE is active LOW. After the first
clock of the read access, the output buffers are controlled by
OE and the internal control logic. OE must be driven LOW in
order for the device to drive out the requested data. On the
subsequent clock, another operation (Read/Write/Deselect)
can be initiated. When the SRAM is deselected at clock rise
by one of the chip enable signals, its output will be three-stated
immediately.

Burst Read Accesses

The CY7C1333H has an on-chip burst counter that allows the
user the ability to supply a single address and conduct up to
four Reads without reasserting the address inputs. ADV/LD
must be driven LOW in order to load a new address into the
SRAM, as described in the Single Read Access section above.
The sequence of the burst counter is determined by the MODE
input signal. A LOW input on MODE selects a linear burst
mode, a HIGH selects an interleaved burst sequence. Both
burst counters use A

0

 and A

1

 in the burst sequence, and will

wrap around when incremented sufficiently. A HIGH input on
ADV/LD will increment the internal burst counter regardless of
the state of chip enable inputs or WE. WE is latched at the

beginning of a burst cycle. Therefore, the type of access (Read
or Write) is maintained throughout the burst sequence.

Single Write Accesses

Write access are initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE

1

, CE

2

,

and CE

are ALL asserted active, and (3) the write signal WE

is asserted LOW. The address presented to the address bus
is loaded into the Address Register. The write signals are
latched into the Control Logic block. The data lines are
automatically three-stated regardless of the state of the OE
input signal. This allows the external logic to present the data
on DQs.

On the next clock rise the data presented to DQs (or a subset
for Byte Write operations, see Truth Table for details) inputs is
latched into the device and the write is complete. Additional
accesses (Read/Write/Deselect) can be initiated on this cycle.

The data written during the Write operation is controlled by
BW

[A:D]

 signals. The CY7C1333H provides Byte Write

capability that is described in the Truth Table. Asserting the
Write Enable input (WE) with the selected Byte Write Select
input will selectively write to only the desired bytes. Bytes not
selected during a Byte Write operation will remain unaltered.
A synchronous self-timed Write mechanism has been
provided to simplify the Write operations. Byte Write capability
has been included in order to greatly simplify
Read/Modify/Write sequences, which can be reduced to
simple Byte Write operations. 

Because the CY7C1333H is a common I/O device, data
should not be driven into the device while the outputs are
active. The Output Enable (OE) can be deasserted HIGH
before presenting data to the DQ inputs. Doing so will
three-state the output drivers. As a safety precaution, DQs are
automatically three-stated during the data portion of a Write
cycle, regardless of the state of OE. 

Burst Write Accesses

The CY7C1333H has an on-chip burst counter that allows the
user the ability to supply a single address and conduct up to
four Write operations without reasserting the address inputs.
ADV/LD must be driven LOW in order to load the initial
address, as described in the Single Write Access section
above. When ADV/LD is driven HIGH on the subsequent clock
rise, the Chip Enables (CE

1

, CE

2

, and CE

3

) and WE inputs are

ignored and the burst counter is incremented. The correct
BW

[A:D]

 inputs must be driven in each cycle of the burst write,

in order to write the correct bytes of data.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CE

1

, CE

2

, and CE

3

, must remain inactive

for the duration of t

ZZREC 

after the ZZ input returns LOW.

[+] Feedback 

Содержание CY7C1333H

Страница 1: ...ith data being transferred on every clock cycle This feature dramatically improves the throughput of data through the SRAM especially in systems that require frequent Write Read transitions All synchr...

Страница 2: ...B DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA NC NC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSS DQD DQD DQD DQD VSS V...

Страница 3: ...e allowed to behave as outputs When deasserted HIGH I O pins are three stated and act as input data pins OE is masked during the data portion of a Write sequence during the first clock when emerging f...

Страница 4: ...n incremented sufficiently A HIGH input on ADV LD will increment the internal burst counter regardless of the state of chip enable inputs or WE WE is latched at the beginning of a burst cycle Therefor...

Страница 5: ...t X X X L H X X L L L H Data Out Q NOP DUMMY READ Begin Burst External L H L L L H X H L L H Three State DUMMY READ Continue Burst Next X X X L H X X H L L H Three State WRITE Cycle Begin Burst Extern...

Страница 6: ...12 Truth Table for Read Write 2 3 Function WE BWA BWB BWC BWD Read H X X X X Write No Bytes Written L H H H H Write Byte A DQA L L H H H Write Byte B DQB L H L H H Write Byte C DQC L H H L H Write By...

Страница 7: ...Current GND VI VDD Output Disabled 5 5 A IDD VDD Operating Supply Current VDD Max IOUT 0 mA f fMAX 1 tCYC 7 5 ns cycle 133 MHz 225 mA 10 ns cycle 100 MHz 205 mA ISB1 Automatic CE Power down Current T...

Страница 8: ...2 0 ns tCENS CEN Set up before CLK Rise 1 5 2 0 ns tDS Data Input Set up before CLK Rise 1 5 2 0 ns tCES Chip Enable Set Up before CLK Rise 1 5 2 0 ns Notes 12 Timing reference level is 1 5V when VDD...

Страница 9: ...n CE is HIGH CE1 is HIGH or CE2 is LOW or CE3 is HIGH 20 Order of the Burst sequence is determined by the status of the MODE 0 Linear 1 Interleaved Burst operations are optional Switching Characterist...

Страница 10: ...133AXC A101 Lead Free 100 lead Thin Quad Flat Pack 14 x 20 x 1 4 mm Commercial CY7C1333H 133AXI A101 Lead Free 100 lead Thin Quad Flat Pack 14 x 20 x 1 4 mm Industrial 100 CY7C1333H 100AXC A101 Lead F...

Страница 11: ...s written agreement with Cypress Furthermore Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be expected to...

Страница 12: ...Page 12 of 12 Document History Page Document Title CY7C1333H 2 Mbit 64K x 32 Flow Through SRAM with NoBL Architecture Document Number 001 00209 REV ECN NO Issue Date Orig of Change Description of Chan...

Отзывы: